Kristin Persson

ETA Staff Scientist, Joint Center for Artificial Photosynthesis (JCAP)

Lawrence Berkeley National Laboratory
One Cyclotron Road, Mailstop 33R0146
Berkeley, CA 94720
USA

<table>
<thead>
<tr>
<th>Location:</th>
<th>33-0143D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone:</td>
<td>(510) 486-7218</td>
</tr>
<tr>
<td>FAX:</td>
<td>none</td>
</tr>
<tr>
<td>Email:</td>
<td>KAPersson@lbl.gov</td>
</tr>
<tr>
<td>Website:</td>
<td>http://perssongroup.lbl.gov/</td>
</tr>
</tbody>
</table>

Research Centers:

http://solarfuelshub.org/

The Joint Center for Artificial Photosynthesis (JCAP) is one of the Department of Energy Innovation Hubs. Its mission is to generate carbon-neutral fuels efficiently using only sunlight and water or carbon dioxide and sustainable materials. A number of CSD scientists participate in JCAP, working on catalysts, transformations using materials assemblies, and interfacial chemistry.

Research Interests:

Dr. Persson studies the physics and chemistry of materials using atomistic computational methods and high-performance computing technology, particularly for clean-energy production and storage applications.

In JCAP, Dr. Persson’s research centers around photocathodes which carry out the carbon dioxide reduction reaction that are a central to the establishment of efficient, sustainable CO2 reduction. Photoelectrode architectures that include a semiconductor-liquid junction and exclude multiple buried p-n junctions are desirable for maximal efficiency and scalability of solar-fuel generation. To realize this design paradigm, new light absorbers which meet a host of design criteria must be discovered. Dr. Persson’s team will identify the most promising light absorbers for solar-fuels applications through a multi-faceted materials-discovery platform that combines high-throughput computation and experiments.

Relevant Publications