Physics Opportunities and Site Requirements for 2nd and 3rd generation Noble Liquid detectors for direct Dark Matter Search

Davide D'Angelo

Universita degli Studi and INFN Milano (Italy)

3rd Town Meeting – Monterey, CA – 8th Sep 2013

Outline

- Introduction
- Noble gases
- Single or double phase
- Current projects ArDM, DarkSide, Xenon, DEAP/ miniCLEAN, XMASS, LUX
- G2 scale-up
- ✤ G3 scale-up
- Cosmogenic backgrounds

Complementary approaches

WIMP signature

Underground projects

Underground laboratories

	Noble gases	Neon	Argon	Xenon
2	Atomic Number	10	18	54
	Atomic Mass	20.2	40.0	131.3
	Boiling Point (T _b)	27.1 K	87.3 K	165.0 K
	Liquid density at T _b (g/cm ³)	1.21	1.40	2.94
2 8	Fraction in atmosphere (ppm)	18.2	9340	0.09
	Cost	\$\$	\$	\$\$\$\$
28	Light Yield (ph/keV)	25	40	42
8	Prompt Time constant	2.2ns	6ns	2.2ns
2	Late Time constant	16us	1.6us	21ns
88	PSD	yes	yes (3 10 ⁻⁸)	no
	e ⁻ drift velocity at 1kV/cm	2cm/s	2 10 ⁵ cm/s	2 10 ⁵ cm/s
28888	S2/S1 discrimination	no	2 10-2 - 10-3	5 10-3 - 10-4
8	Open Project lines	(1)	3	3
288288	Nuclear recoil L _{eff}		0.25 (>20keV)	~0.1 (@8keV)
	WIMP ROI (keV)		30-200	8-45
	Wimp Mass of peak sensitivity		~100GeV	~50GeV

18

2 **He**

Helium 4.002602

10 Neon 20.1797

18

Ar

Argon 39.948

36 **Kr**

Krypton 83.798

Xenon 131.293

86

Rn

Radon (222.0176)

54 **Xe**

Signal expected

- $\rho \approx 0.3 \text{ Gev/cm}^3$
- \odot <v> \approx 230 km/s

$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos\theta) \sim \mathcal{O}(10 \text{ keV})$$

Background

Sources of background:

- Target material
- Detector material
- Site radioactivity (Radon, gammas, neutrons)
- Cosmogenics
- Solar neutrinos

Strategy:

- Target purification/depletion
- Selection of Materials (e.g. QPIDs for PMTs)
- ER/NR discrimination:
 - S2/S1 (better for Xe)
 - ✤ PSD (Ar only) x3x10⁻⁸
 - single/multi sites (mostly TPC).
- Self shielding/fiducialization
- Site selection
- Active veto
- Passive Shielding

Single or Dual phase?

Single-Phase LNe / LAr / Xe Dual-Phase LAr / LXe

 $\sigma \approx 10$ cm No S2/S1 discrimination, but no pile-up Strong fiducialization needed ~ 10% high optical coverage~70-80% -> lower threshold $\sigma_{x,y} \approx 3mm$ $\sigma_z < 1mm$ moderate fiducialization~50% - 70% several kV electric field

Why noble gases?

The low mass struggle

CDMS-Si favors a WIMP region of interest at 8.6 GeV with 1.9x10⁻⁴¹ cm² cross section. Consistent with CDMS Ge limits and with a WIMP interpretation of the COGENT experiment, not so much with DAMA and CRESST. In tension with limits from Xenon 10, Xenon 100 experiments

All region excluded by LHC: if this is a WIMP, it's not the same one...

Generation 1 10⁻⁴⁵ cm²

Xenon 100

Located in LNGS (3800mwe) 62kg LXe (34kg FM) dual phase TPC 30cm x 30cm 241 1" PMTs in 2012 2 events observed compatible with bkg expectations Currently holding best limit for M_{χ} >10GeV

Xenon 100 and the present scenarion

Dark Side 50

Active Neutron Veto

Installed in LNGS Hall C, CTF of Borexino 30 tons liquid scintillator neutron veto 110 8' PMTs Borated PC+PPO mixture ~60kev n capture @0.6phe/keV capture time reduced 250us -> 2.3us 99.5% efficiency on radiogenic neutrons 1,000 tons water Cherenkov muon veto 80 8' PMTs 99.9% effciency

XMASS800kg in Kamioka

- φ10m x 10m ultra pure water shield with 20 inch x 70 PMTs for muon veto
- 642 ultra low background 2 inch PMTs
- 835 kg of LXe for sensitive volume.

RI in PMT	Activity per 1PMT(mBq/
238U-chain	0.70+/-0.28
232Th-chain	1.51+/-0.31
40K	9.10+/-2.15
60Co	2 92+/-0 16

Masaki Yamashita

Plans to scale to G2 (5t->1.5tFM) and G3(20t->12tFM)

Recent Result of XMASS

Light mass WIMP

Masaki Yamashita

•Full volume analysis with 835 kg LXe. (without fiducial volume cut.)

•Hight Light Yield 14.7 PE/keV

•Eth 0.3 keVee (scaled by 122keV)

Scintillation Efficiency (Leff) from XENON (E.Aprile et al., Phys. Rev. Lett. 107 (2011) 131302)

For higher WIMP mass, unexpected surface background. In 2013 PMTs will be refurbished to handle this problem

LUX @ Sanford Lab 2013

• LXe TPC - 300 kg active / 100 kg fid.

- Installed in water shield at Sanford Lab Davis Campus 4850' level Aug 2012
- Xenon condensed Feb 2013
- Detector

.

- Circulating > 20 SLPM with 2-phase heat exchanger @ >90% eff.
- Good purity after < 2 months (Electron drift attenuation >100 cm)
- Excellent light yield 8 phe/keVee, zero field, 122 keVee
- ⁸⁵Kr @ 4ppt (less than PMT bkg.)
- **WIMP Searches**
 - Plan short (~ 60 day) WIMP search run result by end 2013 - non-blind analysis
 - Full year-long WIMP search run to begin in 2014/5 - blind analysis

122 Hamamatsu R8778 Low bkg. PMTs

ArDM

Fully PMT-based readout:

- 2 new arrays of 12 x 8" Hamamatsu PMTs (R5912-02MOD-LRI), TPB coating
- primary scintillation light (in liquid)
- charge via proportional scintillation (in vapor)
 - \rightarrow discrimination with PSD, charge/light ratio
- Active LAr target: ~0.8 ton
- Tetratex® side reflectors coated with TPB
- Drift field : ~1 kV/cm
- ~100 kV at cathode, supplied using VHV feedthrough

ArDM

ЕТНС

Installed at Laboratorio Subterráneo de Canfranc (LSC)

The new ArDM detector, fully assembled in the LSC clean room, being installed into the detector vessel

Hall A at LSC

- Installation of ArDM finished March 2013
- currently: commissioning with GAr improved uniformity. Detector is taking data. LY=2 pe/keVee @ E=0 keV, measured with α material screening with HPGE @ LSM in-situ n-measurement with liquid scintillator

Next: LAr comissioning

LAr tests: HV, purification, cryogenics... expect physics run by 2014 Generation 2 10⁻⁴⁷ cm²

DEAP 3600

DEAP-3600 Detector

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides + PE shielding provide neutron moderation

Detector in 8 m water shield at SNOLAB

DEAP 3600

DEAP 3600 physics potential

Post LHC remaining minimal SUSY models can be investigated at $m_{\chi} > 350$ GeV

DEAP 3600: scale-up

Tentative Project Schedule

2013,2014:

Conceptual design/safety analysis, develop budget Identify space requirements, submit space request and development requests (Start DEAP-3600 Data collection, focus of effort)

2014,2015:

More detailed engineering for budgeting Design/plans for depleted argon storage and delivery

2015-2017:

Detailed engineering for contracts/fabrication Implementation of DAr storage and argon collection start

2017-2020:

Construction and Installation Continued DAr collection/storage (End DEAP-3600 Data collection)

2020-2025: Operation

Depleted Argon

Ordinary atmospheric argon contains cosmogenic ³⁹Ar

- β -emitter (Q=565keV, τ = 388yr)
- TPC drift times: ~ 500 μ s/m.
 Above 1t pile-up becomes an issue.
- Undeground Argon facility established in 2011 in Colorado within DarkSide.
 Will serve DarkSide50 and DEAP 3600.
- Production rate ~ 1kg/d
 - need to improve to >100kg/d for multi-ton detectors

depletion factor: >100

MiniCLEAN

DEAP twin experiment: investigation/confirmation 500kg/150kgFM Dual target: LAR and LNe Plans to scale up to 45t

MiniCLEAN

Xenon 1t

XENON1T sensitivity goal

1mx1m dual-phase Xe TPC with 100kV Construction started ~2months ago 3.5t active target: 2t fiducial 248 3" PMTs

Xenon 1t

1mx1m dual-phase Xe TPC with 100kV Construction started ~2months ago 3.5t active target: 2t fiducial 248 3" PMTs

Dark Side 5t

submitted for DOE approval in Novemer 2013

Generation 3 10⁻⁴⁸ cm² (and beyond?)

LZ

2 stages Scale-up of LUX, joint effort of Lux and Zepelin collaborations

SANFORD underground laboratory

Darwin

20t LXe (~12t fiducial); ~ 1050 PMTs, physics run to start in 2020

Darwin: site radioactivity

	LNGS: Hall A		
Energy interval	gamma flux	gamma flux	
$[\mathrm{kev}]$	$[m^{-2}d^{-1}]$	$[\rm cm^{-2} s^{-1}]$	
0-500	$4.4 \cdot 10^{8}$	0.51	
500-1000	$1.1 \cdot 10^{8}$	0.13	
1000-2000	$7.0\cdot 10^7$	0.081	
2000-3000	$1.3\cdot 10^7$	0.015	
Entire spectrum	$6.3 \cdot 10^{8}$	0.74	

C. Bucci et al., Eur. Phys. J. A 41, 155 (2009)

	Neutron Flux (× 10^{-6} cm ⁻² s ⁻¹)			
Lab	all energies	$E{>}1MeV$		
LNGS [61] (measurements)	$3.78 {\pm} 0.25$	$0.60 \pm 0.07 \text{ or } 0.70 \pm 0.14$		
LNGS [61] (simulations)	$3.75{\pm}0.67$	$0.58{\pm}0.13$		
LNGS - Hall A [62] (measurements)	$3.8{\pm}1.2$	$1.2{\pm}0.4$		
LSM	≈ 2 [64]	$1.06 \pm 0.1 (\text{stat}) \pm 0.59 (\text{syst}) [63]$		

H. Wulandari et al., arXiv:hep-ex/0312050.

	Depth	Equivalent	Muon flux	Mean energy	Muon-induced
		vertical depth [65]			neutron flux
Lab	(m.w.e)	(m.w.e.)	$(m^{-2} d^{-1})$	$({ m GeV})$	$(m^{-2} d^{-1})$
LNGS	≈ 3750	≈ 3100	$22.3{\pm}2.6$	≈ 270	2.35
LSM	≈ 4800	≈ 4200	$4.17 {\pm} 0.43$	≈ 300	0.54

D.-M. Mei, A. Hime, Phys. Rev. D 73 (2006)

In LNGS environment, NR backgrounds would be subdominant

Darwin

In LNGS environment, NR backgrounds would be subdominant

Darwin

Xe 20 ton (10 ton)

⁴⁰Ar 70 ton (50 ton)

Projects summary

G	Experiment	Target	Detector	Location	Active mass	Fiducial mass	Year physics	Peak sensitivity
G1	Xenon 100	Xe	TPC	LNGS	62	34	2012	2 10-45
G1	Dark Side 50	Ar	TPC	LNGS	50	33	2013	1.5 10-45
G1	Xmass	Xe	single	Kamioka	800	100	2014?	???
G1	LUX	Xe	ТРС	SURF	350	100	2014/5	7 10-46
G1	ArDM	Ar	TPC	Canfranc	850	???	2014/5	???
G2	Deap 3600	Ar	single	SNO1ab	3600	1000	2015	10-46
G2	MiniClean	Ar/Ne	single	SNO1ab	500	150	2015?	
G2	Xenon 1t	Xe	TPC	LNGS	3500	2200	2017	2 10-47
G2	DarkSide 5t	Ar	TPC	LNGS	5000	3000	2017	10-47
G2	LZS	Xe	TPC	SURF	1500	800	2017	4 10-47
G3	Darwin	Xe(Ar)	TPC	LNGS?	20t	12t	~2020	~10 ⁻⁴⁸
G3	LZD	Xe	ТРС	???	20t	12t	~2020	~10-48
G3	MAX/XAX	Xe+Ar	2TPCs	DUSEL???	20t+70t	12t+50t	~2020	~10-48

Borexino for Dark Matter?

ournal of Cosmology and Astroparticle Physics

Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth

The Borexino collaboration

JCAP08(2013)049

Cosmogenic Neutrons

Cosmogenic neutron production in organic liquid scintillator: Yield = $(3.10\pm0.07_{stat}\pm0.08_{syst})$ 10⁻⁴ n/(μ g/cm²) Flux = $(7.31\pm0.17_{stat}\pm0.19_{syst})$ n/m²/d

LNGS	Experiment	Year	10 ⁻⁴ μ m ⁻² s ⁻¹	μ m ⁻² d ⁻¹
Hall A	LVD	2009	3.31±0.03	28.5±0.2
Hall B	MACRO	1995	3.22±0.08	27.8±0.7
Hall C	BOREXINO	2012	3.41±0.01	29.46±0.08

Cosmogenic Neutrons

Comparing with simulations

Borexino and surrounded area simulated Muon energy and angular distributions from MACRO $\mu^+/\mu^- = 1.38$ from OPERA

	GEANT4	GEANT4	F LUKA	Borexino	KamLAND
	Model III	Model IV			
		$-\langle \mathbf{E}_{\mu} \rangle = 283$	$3 \pm 19 \mathrm{GeV}$ —		$\langle E_{\mu} \rangle = 260 \pm 8 \mathrm{GeV}$
Isotopes		Y	ield $[10^{-7} (\mu_{s})]$	$g/cm^2)^{-1}$]	
12 N	1.11 ± 0.13	3.0 ± 0.2	0.5 ± 0.2	< 1.1	1.8 ± 0.4
$^{12}\mathbf{B}$	30.1 ± 0.7	29.7 ± 0.7	28.8 ± 1.9	56 ± 3	42.9 ± 3.3
${}^{8}\mathbf{He}$	< 0.04	0.18 ± 0.05	0.30 ± 0.15	< 1.5	0.7 ± 0.4
9 Li	0.6 ± 0.1	1.68 ± 0.16	3.1 ± 0.4	2.9 ± 0.3	2.2 ± 0.2
$^{8}\mathbf{B}$	0.52 ± 0.09	1.44 ± 0.15	6.6 ± 0.6	14 ± 6	8.4 ± 2.4
${}^{6}\mathbf{He}$	18.5 ± 0.5	8.9 ± 0.4	17.3 ± 1.1	38 ± 15	not reported
8 Li	27.7 ± 0.7	7.8 ± 0.4	28.8 ± 1.0	7 ± 7	12.2 ± 2.6
${}^{9}\mathbf{C}$	0.16 ± 0.05	0.99 ± 0.13	0.91 ± 0.10	$<\!16$	3.0 ± 1.2
$^{11}\mathbf{Be}$	0.24 ± 0.06	0.45 ± 0.09	0.59 ± 0.12	< 7.0	1.1 ± 0.2
$^{10}\mathbf{C}$	15.0 ± 0.5	41.1 ± 0.8	14.1 ± 0.7	18 ± 5	16.5 ± 1.9
11 C	315 ± 2	415 ± 3	467 ± 23	886 ± 115	866 ± 153
Neutrons					
	3.01 ± 0.05	2.99 ± 0.03	2.46 ± 0.12	3.10 ± 0.11	2.79 ± 0.31

Comparing n multiplicity

Comparing lateral distance

Laboratory needs

- Service lines: cooling, network,...
- Standard laboratory services
- Machine shop, chemistry lab, electronics lab,,computing.
- Desiderata:
 - Radon free clean room
 - PMT test facility (above ground)

Conclusions

- Noble gases are and will be driving dark matter searches at large masses (above LHC limit).
- LXe and (depleted) LAr will both be pursued as complementary approaches.
- ✤ 2014: G1 projects coming to a conclusion.
- 2017: G2 projects should perform physics runs.
- 2020: G3 projects at multi-ton scales plan to converge.

thanks for material to Marc Schumann, Laura Baudis, Cristiano Galbiati

Xenon 100 – Spin Dependant

Geant4 models

Model I	HP	Binary	Bertini	FTF
Protons		$0 \rightarrow 5 \mathrm{GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
Neutrons	$0 \rightarrow 20 \mathrm{MeV}$	$19.9{\rm MeV} \rightarrow 5{\rm GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
π		$0 \rightarrow 5 \mathrm{GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
Κ			$0 \to 5 {\rm GeV}$	$4{\rm GeV} \rightarrow 100{\rm TeV}$
Model II	HP	Bertini		FTF
Protons		$0 \rightarrow 5 \mathrm{GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
Neutrons	$0 \rightarrow 20 \mathrm{MeV}$	$19.9{\rm MeV} \rightarrow 5{\rm GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
π, K		$0 \rightarrow 5 \mathrm{GeV}$		$4{\rm GeV} \rightarrow 100{\rm TeV}$
Model III	HP	Binary	LEP	\mathbf{QGS}
Protons		$0 \rightarrow 9.9 \mathrm{GeV}$	$9.5 \rightarrow 25 \mathrm{GeV}$	$12{ m GeV} ightarrow 100{ m TeV}$
Neutrons	$0 \rightarrow 20 \mathrm{MeV}$	$19.9{\rm MeV} \rightarrow 9.9{\rm GeV}$	$9.5 \rightarrow 25 {\rm GeV}$	$12{\rm GeV} \rightarrow 100{\rm TeV}$
π, K		$0 \rightarrow 9.9{\rm GeV}$	$9.5 \rightarrow 25 {\rm GeV}$	$12{\rm GeV} \rightarrow 100{\rm TeV}$
Model IV	HP	Bertini	\mathbf{LEP}	\mathbf{QGS}
Protons		$0 \rightarrow 9.9 \mathrm{GeV}$	$9.5 ightarrow 25 { m GeV}$	$12{ m GeV} ightarrow 100{ m TeV}$
Neutrons	$0 \rightarrow 20 \mathrm{MeV}$	$19.9{\rm MeV} \rightarrow 9.9{\rm GeV}$	$9.5 \rightarrow 25 {\rm GeV}$	$12{\rm GeV} \rightarrow 100{\rm TeV}$
π, K		$0 \to 9.9{\rm GeV}$	$9.5 \rightarrow 25 {\rm GeV}$	$12{\rm GeV} \rightarrow 100{\rm TeV}$