

SNOLAB Objectives

- To promote an International programme of Astroparticle Physics
- To provide a deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays (2070m depth)
- To provide a clean laboratory
 - Entire lab at class 2000, or better, to mitigate against background contamination of experiments.
- To provide infrastructure for, and support to, the experiments
- Focus on dark matter, double beta decay, solar & SN experiments requiring depth and cleanliness.
 - Also provide space for prototyping of future experiments.
- Large scale expt's (ktonne, not Mtonne)
- Goal has been to progressively create a significant amount of space for an active programme as early as possible.

The SNOLAB facility

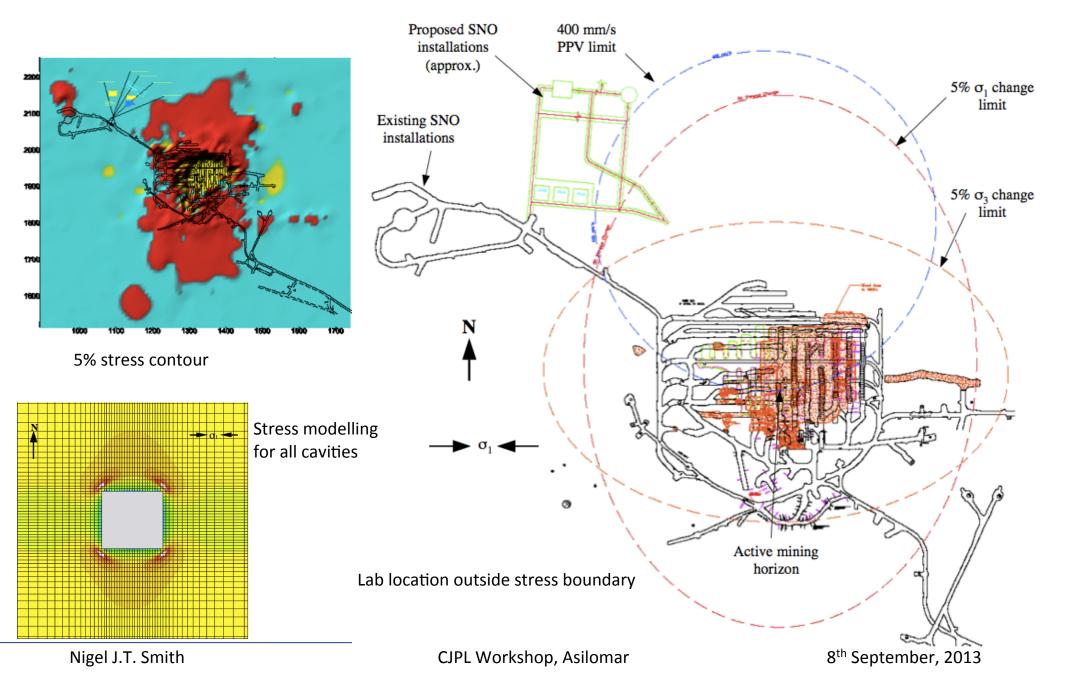
- Operated in the Creighton nickel mine, near Sudbury, Ontario, hosted by Vale Ltd.
- Developed from the existing SNO detector
- Underground campus at 6800' level, 0.27µ/m2/day
- Development funds primarily through CFI as part of a competition to develop international facilities within Canada
- Additional construction funding from NSERC, FedNOR, NOHF for surface facility
- Operational funding through NSERC, CFI, MRI/MEDI (Ontario)
- Managed as a joint trust between five Universities (Alberta, Carleton, Queen's, Laurentian, Montréal)
 - Carleton led SNOLAB construction and facility development
 - SNOLAB formally a Queen's Institute to provide legal entity (for Vale)
 - SNOLAB Institute Board of Directors has overall governance responsibility

Vale Creighton Mine

- Surface Facility (3100 m2)
 - Operational from 2005 Provides offices, conference room, dry, warehousing, IT servers, clean-room labs, detector construction labs, chemical + assay lab
 - 440m2 class-1000 clean room for experiment setup and tests

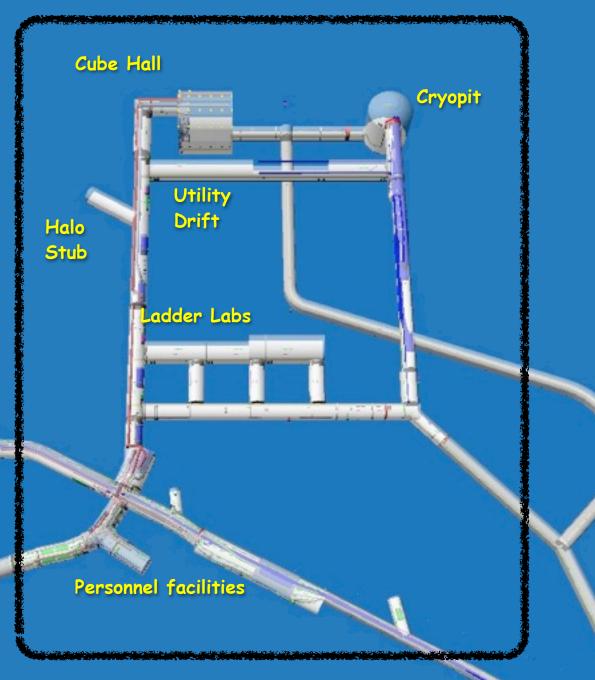
Facility design philosophy

- Initial underground design concept was single monolithic cavity
- Workshops held with community to determine experiment requirements
- Switched to multiple target cavities
 - Isolate experiments for background and noise control
 - Safety of large cryogenic liquid volumes: connection to raise
 - Logistics not limited by break-out into several cavities
- Utility drifts separated from target volumes (à la SNO)
- Entire facility to be maintained as a C2000 clean-room
 - Minimise potential for cross-contamination of experiments from dust introduced into lab
 - Minimise burden on experiments, trained crew for materials
 - Controlled single point access for materials and personnel, including personnel showers and change area
 - Provide proto-typing and rapid deployment capability for medium scale projects


Facility design considerations

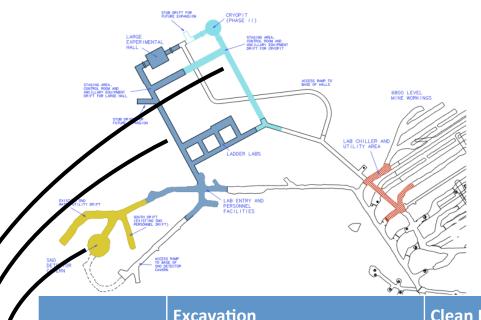
- Seismic activity
 - Mining induced seismic activity quasi-random
 - SNO and SNOLAB designed to 4.1 Nuttli, such event seen (after completion of SNO)
 - Maximum event now taken as 4.3 Nuttli
- Design criteria seismic
 - SNO and SNOLAB in the stable hanging wall of norite
 - Exploratory core drilling performed over lab area
 - Detailed analysis of cavity and lab design stress from ITASCA
 - Lab placed outside the lifetime 5% stress boundary from mining activity
 - Orientation to give cavities along line of maximum stress
 - Secondary support: 2m rockbolts, 7/10m cables, mesh and shotcrete
- Background minimisation
 - Norite rock: 1.00 ± 0.13 % K, 1.11±0.13 ppm U and 5.56±0.52 ppm Th
 - Dust suppression required all experimental areas shotcreted and painted to capture dust and contamination

Seismic design criteria



Underground Facilities

SNO Area: 1860 m²

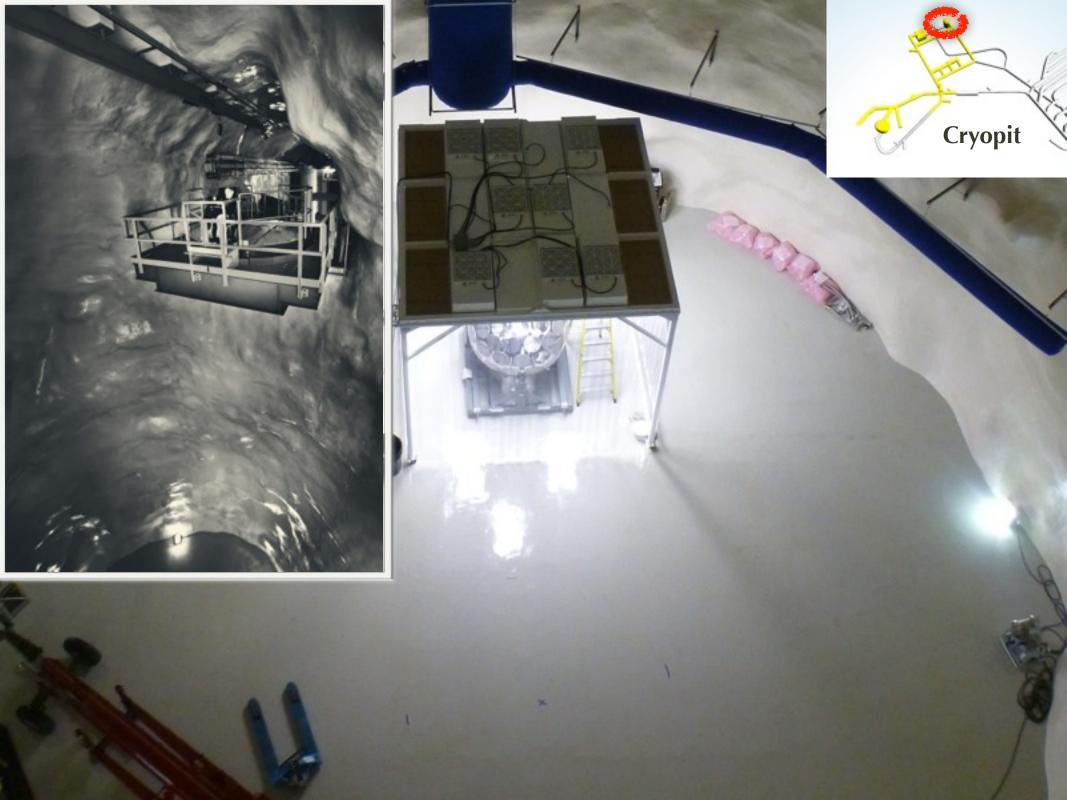


SNOLAB Area: 5360 m²

SNOLAB Space Summary

Area	Dimensions	Area	Volume
SNO Cavern	24m (dia) x 30m(h)	250m ²	9,400 m ³
Ladder Labs	Ladder Labs 32m(l)x6m(w)x5.5m(h)		960 m ³
	23m(l)x7.5m(w)x7.6m(h)	170m ²	1,100 m ³
Cube Hall	18.3m(l)x15m(w) x 19.7m(h)	280m ²	5,600 m ³
Cryopit	15m(dia) x 19.7m(h)	180m ²	3,900 m ³

		Excavation		Clean Room		Laboratory	
		Area (m2)	Volume (m3)	Area (m2)	Volume (m3)	Area (m2)	Volume (m3)
\	Original SNO Areas	1860	16500	1130	13300	750	11700
\	+Phase I	6070	38750	3900	29750	2430	23700
\	+Phase II	7220	46650	4940	37250	3060	29550



Facility Services

Ventilation

- 100,000 cfm mine air flow to laboratory, mainly used for cooling of chillers
- 10% make-up air fed in lab 13 air handling units in lab
- Maintains pressure differentials for cleanliness
- 10 air changes/hour nominal; 5 air changes/hour in cavities

- Cooling

- 1 MW cooling capability from 5 cooled water units delivering 10°C water to the laboratory. 100kW from rock in steady state (42°C base)
- 20% utilised at present with minimal expt. load

Power distribution

- 3-phase 13.8 kV fed to facility
- Stepped to 3-phase 600V (total 2000 kVA); Upgrade underway to 3000 kVA
- 150kW (++) Generator planned + switch-over infrastructure

Water

- Utility water derived from mine water
- UPW as a general capability for experiments (150I/min 183 k Ω m)
- Waste disposal through mine systems (except sewage STP)

Facility Services

Gases / Liquids

- Bottle transport used for gases; dewar transport for LN2
- Discussion on liquefaction underground (but purity issue for cover gas systems)

Networking

- Switching to single mode fibres underway
- 100Mbit through shaft; upgrade to Gbit once fibres switched
- Low Background Assay and calibrations
 - Co-ax and well Ge detectors available
 - X-ray fluorescence for cleanliness assay

Workshops

- Surface machine shop; surface chem labs; surface electronics shop
- Underground clean room workshop and chem labs in construction

'Hot' Lab

- Dedicated surface lab at Laurentian University for 'hot' work
- Encapsulation of sources; production of radiological spikes

Other services

GPS timing

Experiment design considerations

Transport

- Cage size: 3.7 m x 1.5 m x 2.6 m, slinging for larger objects

- Seismic mitigation

- Design criteria now 4.3 Nuttli, following 4.1 event in SNO
- Forcing function applied to experiment designs maximum velocity 800 mm/s at 5 Hz

Pressure

- Air pressure is 25% higher than atmospheric
- Excursions during ventilation changes and crown blasts (up to 3% seen)
 - managed through baffling and blast doors
 - design pressure for experiments up to 20 psi

Radon (~130 Bq/m3)

- No direct radon suppression in main air intakes
- Surface (compressed) air used to provide low(er) radon air to specific areas
- Cover gas used (LN2 boil-off) on detector systems
- Ventilation (make-up vs recirculation) minimises radon emission from walls

H2S

- Long term exposure to mine air showed deposition of CuS on SNO electronics
- Suppression is now installed in the air handling units

Additional Information

- SNOLAB Users Handbook
 - (Outdated (2006) but still relevant
- Geo-tech Reports
 - Forcing function for 4.3 Nuttli event
- "The Construction and Anticipated Science of SNOLAB" Duncan, Noble & Sinclair
 - Ann. Rev. of Nucl. & Part. Science (60) 163-180, 2010

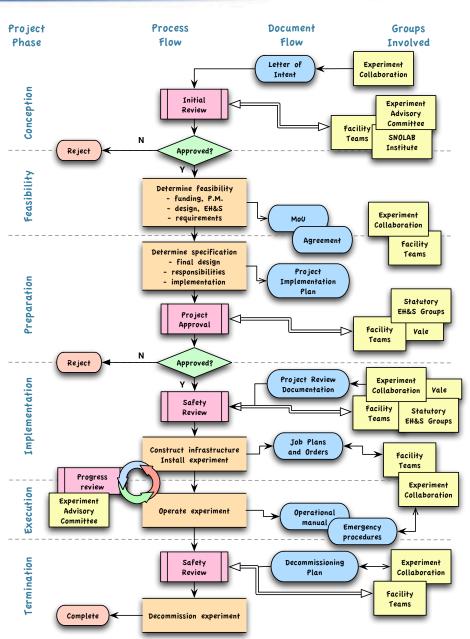
Support for Experiments

- Through a staff of ~55, SNOLAB Provides technical and administrative support to SNOLAB experiments:
 - design, construction, operations
 - background assay, science support
 - materials transport, cleaning, EH&S, training, procurement
- The Research team members can act as collaborators on experiments, providing operational and scientific support
- Infrastructure support is provided through development of shielding systems, mechanical supports, access, EH&S, etc.
- Services provided as standard to experiments includes life safety, power, ventilation, compressed air, ultra-pure water, liquid nitrogen, IT and networking
- Vale provide materials transport through the shaft, maintain the safety of the infrastructure, regulatory checks, etc.
 - SNOLAB currently has 50-80 people underground regularly, 3 dedicated cages
 - Cages integrated into Vale operations effectively (eg SNO D2O movement)
 - Double shifts maintained regularly

SNOLAB Operations costs

- Staff complement ~60
 - Cost ~\$4M/yr
 - Note: additional support from University partners so NOT full project staff costs
 - 24hr/day operations not assumed
- Non-staff
 - Cost currently ~\$3M/yr
 - Includes Vale charges ~\$1M
- Project cash costs currently ~\$7M/yr
- "In-kind"
 - If mining operations ceased, the equivalent contribution from Vale estimated ~\$7-10M/yr:
 - Hoist, materials, service infrastructure, EH&S, drift maintenance, collar services, water+ventilation
 - University support ~\$1M/yr

SNOLAB operational model



- For current facilities
 - Traditional NP "free-at-the-point-of-access" model
 - Canadian support for baseline operations of the facility, including life safety, power, ventilation, materials handling, compressed air, UPW, IT and networking
 - Experiments charged for additional 'non-standard' costs: significant transport, high power usage, significant gas/nitrogen
 - Experiments responsible for clean-room beyond C2000
 - Infrastructure negotiated: capital expected from experiments
- Based on current planned programme
 - If additional experiments incorporated immediately then additional installation and construction support would be required through the experiment for infrastructure

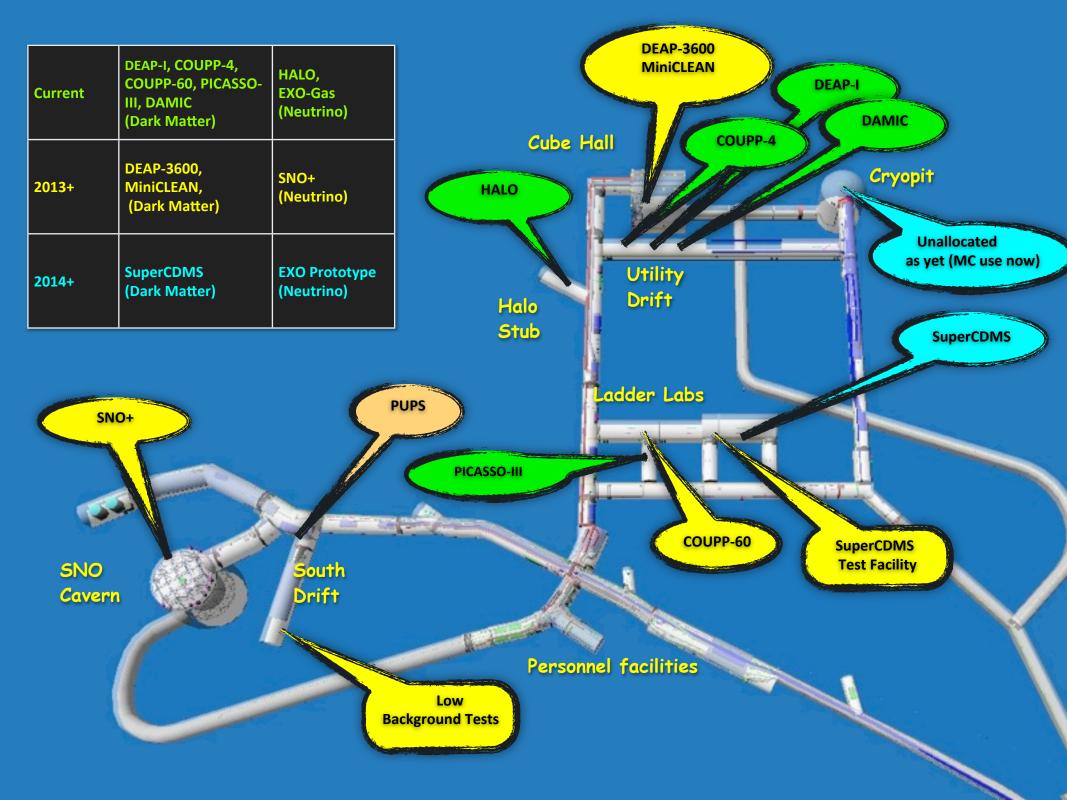
Project Lifecycle Planning

- Project lifecycle and interaction with facility well-defined
 - Structures and agreements under development
 - Q.A. under development
- International Experiment Advisory Committee (Stew Smith chair) helps to define programme
- H&S reviews integral to development and deployment
 - SNOLAB
 - Vale (if req'd)
- Workshop based approach to updated programme needs
 - e.g. material production/machining underground

Current programme: Dark Matter at SNOLAB

- Noble Liquids: DEAP-I, MiniCLEAN, & DEAP-3600
 - Single Phase Liquid Argon using pulse shape discrimination
 - Prototype DEAP-I completed operation. Demonstration of PSD at 108.
 - Construction for DEAP-3600 and MiniCLEAN well advanced.
 - Will measure Spin Independent cross-section.
- Superheated Liquid / Bubble chamber: PICASSO, COUPP
 - Superheated droplet detectors and bubble chambers. Insensitive to MIPS radioactive background at operating temperature, threshold devices; alpha discrimination demonstrated;
 - COUPP-4 operation completed; PICASSO-III currently operational, COUPP-60 construction completed, in commissioning;
 - Measure Spin Dependent cross-section primarily, COUPP has SI sensitivity;
 - New world leading sensitivity published in 2012.
- Solid State: DAMIC, SuperCDMS
 - State of the art CCD Si / Ge crystals with ionisation / phonon readout.
 - DAMIC operational;
 - CDMS Currently operational in Soudan facility, MN. Next phase will benefit from SNOLAB depth to reach desired sensitivity.
 - Mostly sensitive to Spin Independent cross-section.

Current programme: 0νββ and neutrino at SNOLAB




- SNO+: 130Te → 130Xe + e- + e-
 - Uses existing SNO detector. Heavy water replaced by scintillator loaded with 130Te.
 Modest resolution compensated by high statistical accuracy.
 - Requires engineering for acrylic vessel hold down and purification plant. Technologies already developed.
 - Will also measure
 - solar neutrino pep line (low E-threshold)
 - geo-neutrinos (study of fission processes in crust)
 - supernovae bursts (as part of SNEWS)
 - reactor neutrinos (integrated flux from Canadian reactors)
- EXO-gas: 136Xe → 136Ba++ + e- + e-
 - Ultimate detector aim = large volume Xe Gas TPC
 - Developing technique to tag Ba daughter. Electron tracking capability.
 - Development work at SNOLAB surface facility
- HALO: Dedicated Supernova watch experiment
 - Charged/neutral current interactions in lead
 - Re-use of detectors (NCDs) and material (Pb) from other systems
 - Operational May 2012
 - Will form part of SNEWS array

The SNOLAB Science Programme

Experiment	Solar v	0νββ	Dark Matter	Supernova v	Geo v	Other	Space allocated	Status
CEMI						Mining Data Centre	Surface Facility	Proposal
COBRA		٧					Ladder Labs	Request
COUPP-4			٧				J'-Drift	Operational
COUPP-60			٧				Ladder Labs	Construction
DAMIC			٧				J'-Drift	Operational
DEAP-1			٧				J'-Drift	Operational
DEAP-3600			٧				Cube Hall	Construction
EXO-gas		٧					Ladder Labs	Request
HALO				٧			Halo Stub	Operational
MiniCLEAN			٧				Cube Hall	Construction
PICASSO-III			٧				Ladders Labs	Operational
PUPS						Seismicity	Various	Completed
SNO+	٧	٧		٧	٧		SNO Cavern	Construction
SuperCDMS			٧				Ladder Labs	Request
U-Toronto						Deep Subsurface	External Drifts	Completed

