Infrastructure Development for underground labs - SNOLAB experience

Nigel Smith
Director, SNOLAB
SNOLAB Objectives

- To promote an International programme of Astroparticle Physics
- To provide a deep experimental laboratory to shield sensitive experiments from penetrating Cosmic Rays (2070m depth)
- To provide a clean laboratory
 - Entire lab at class 2000, or better, to mitigate against background contamination of experiments.
- To provide infrastructure for, and support to, the experiments
- Focus on dark matter, double beta decay, solar & SN experiments requiring depth and cleanliness.
 - Also provide space for prototyping of future experiments.
- Large scale expt’s (ktonne, not Mtonne)
- Goal has been to progressively create a significant amount of space for an active programme as early as possible.
The SNOLAB facility

- Operated in the Creighton nickel mine, near Sudbury, Ontario, hosted by Vale Ltd.
- Developed from the existing SNO detector
- Underground campus at 6800’ level, 0.27µ/m2/day
- Development funds primarily through CFI as part of a competition to develop international facilities within Canada
- Additional construction funding from NSERC, FedNOR, NOHF for surface facility
- Operational funding through NSERC, CFI, MRI/MEDI (Ontario)
- Managed as a joint trust between five Universities (Alberta, Carleton, Queen’s, Laurentian, Montréal)
 - Carleton led SNOLAB construction and facility development
 - SNOLAB formally a Queen’s Institute to provide legal entity (for Vale)
 - SNOLAB Institute Board of Directors has overall governance responsibility
Vale Creighton Mine

- Surface Facility (3100 m²)
 - Operational from 2005 - Provides offices, conference room, dry, warehousing, IT servers, clean-room labs, detector construction labs, chemical + assay lab
 - 440m² class-1000 clean room for experiment setup and tests
Facility design philosophy

- Initial underground design concept was single monolithic cavity
- Workshops held with community to determine experiment requirements
- Switched to multiple target cavities
 - Isolate experiments for background and noise control
 - Safety of large cryogenic liquid volumes: connection to raise
 - Logistics not limited by break-out into several cavities
- Utility drifts separated from target volumes (à la SNO)
- Entire facility to be maintained as a C2000 clean-room
 - Minimise potential for cross-contamination of experiments from dust introduced into lab
 - Minimise burden on experiments, trained crew for materials
 - Controlled single point access for materials and personnel, including personnel showers and change area
 - Provide proto-typing and rapid deployment capability for medium scale projects
Facility design considerations

- Seismic activity
 - Mining induced seismic activity - quasi-random
 - SNO and SNOLAB designed to 4.1 NutlI, such event seen (after completion of SNO)
 - Maximum event now taken as 4.3 NutlI

- Design criteria - seismic
 - SNO and SNOLAB in the stable hanging wall of norite
 - Exploratory core drilling performed over lab area
 - Detailed analysis of cavity and lab design stress from ITASCA
 - Lab placed outside the lifetime 5% stress boundary from mining activity
 - Orientation to give cavities along line of maximum stress
 - Secondary support: 2m rockbolts, 7/10m cables, mesh and shotcrete

- Background minimisation
 - Norite rock: 1.00 ± 0.13 % K, 1.11±0.13 ppm U and 5.56±0.52 ppm Th
 - Dust suppression required - all experimental areas shotcreted and painted to capture dust and contamination
Seismic design criteria

5% stress contour

Stress modelling for all cavities

Proposed SNO installations (approx.)

400 mm/s PPV limit

Existing SNO installations

5% σ_1 change limit

5% σ_3 change limit

Lab location outside stress boundary

Active mining horizon

Nigel J.T. Smith

CJPL Workshop, Asilomar

8th September, 2013
Underground Facilities

SNO Area: 1860 m²

SNOLAB Area: 5360 m²
SNOLAB Space Summary

Excavation

<table>
<thead>
<tr>
<th>Area</th>
<th>Dimensions</th>
<th>Area (m²)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNO Cavern</td>
<td>24 m (dia) × 30 m (h)</td>
<td>250²</td>
<td>9,400</td>
</tr>
<tr>
<td>Ladder Labs</td>
<td>32 m (l) × 6 m (w) × 5.5 m (h)</td>
<td>190²</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>23 m (l) × 7.5 m (w) × 7.6 m (h)</td>
<td>170²</td>
<td>1,100</td>
</tr>
<tr>
<td>Cube Hall</td>
<td>18.3 m (l) × 15 m (w) × 19.7 m (h)</td>
<td>280²</td>
<td>5,600</td>
</tr>
<tr>
<td>Cryopit</td>
<td>15 m (dia) × 19.7 m (h)</td>
<td>180²</td>
<td>3,900</td>
</tr>
</tbody>
</table>

Clean Room

<table>
<thead>
<tr>
<th>Area</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original SNO Areas</td>
<td>16,500</td>
</tr>
<tr>
<td>+Phase I</td>
<td>3,8750</td>
</tr>
<tr>
<td>+Phase II</td>
<td>4,6650</td>
</tr>
</tbody>
</table>

Laboratory

<table>
<thead>
<tr>
<th>Area</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original SNO Areas</td>
<td>11,700</td>
</tr>
<tr>
<td>+Phase I</td>
<td>2,3700</td>
</tr>
<tr>
<td>+Phase II</td>
<td>2,9550</td>
</tr>
</tbody>
</table>
Facility Services

- **Ventilation**
 - 100,000 cfm mine air flow to laboratory, mainly used for cooling of chillers
 - 10% make-up air fed in lab - 13 air handling units in lab
 - Maintains pressure differentials for cleanliness
 - 10 air changes/hour nominal; 5 air changes/hour in cavities

- **Cooling**
 - 1 MW cooling capability from 5 cooled water units delivering 10°C water to the laboratory. 100kW from rock in steady state (42°C base)
 - 20% utilised at present with minimal expt. load

- **Power distribution**
 - 3-phase 13.8 kV fed to facility
 - Stepped to 3-phase 600V (total 2000 kVA); Upgrade underway to 3000 kVA
 - 150kW (++) Generator planned + switch-over infrastructure

- **Water**
 - Utility water derived from mine water
 - UPW as a general capability for experiments (150l/min 183 kΩm)
 - Waste disposal through mine systems (except sewage - STP)
Facility Services

- Gases / Liquids
 - Bottle transport used for gases; dewar transport for LN2
 - Discussion on liquefaction underground (but purity issue for cover gas systems)

- Networking
 - Switching to single mode fibres underway
 - 100Mbit through shaft; upgrade to Gbit once fibres switched

- Low Background Assay and calibrations
 - Co-ax and well Ge detectors available
 - X-ray fluorescence for cleanliness assay

- Workshops
 - Surface machine shop; surface chem labs; surface electronics shop
 - Underground clean room workshop and chem labs in construction

- ‘Hot’ Lab
 - Dedicated surface lab at Laurentian University for ‘hot’ work
 - Encapsulation of sources; production of radiological spikes

- Other services
 - GPS timing
Experiment design considerations

- **Transport**
 - Cage size: 3.7 m x 1.5 m x 2.6 m, slinging for larger objects

- **Seismic mitigation**
 - Design criteria now 4.3 Nuttli, following 4.1 event in SNO
 - Forcing function applied to experiment designs - maximum velocity 800 mm/s at 5 Hz

- **Pressure**
 - Air pressure is 25% higher than atmospheric
 - Excursions during ventilation changes and crown blasts (up to 3% seen)
 - managed through baffling and blast doors
 - design pressure for experiments up to 20 psi

- **Radon (~130 Bq/m3)**
 - No direct radon suppression in main air intakes
 - Surface (compressed) air used to provide low(er) radon air to specific areas
 - Cover gas used (LN2 boil-off) on detector systems
 - Ventilation (make-up vs recirculation) minimises radon emission from walls

- **H2S**
 - Long term exposure to mine air showed deposition of CuS on SNO electronics
 - Suppression is now installed in the air handling units
Additional Information

- SNOLAB Users Handbook
 - (Outdated (2006) but still relevant
- Geo-tech Reports
 - Forcing function for 4.3 Nuttli event
- “The Construction and Anticipated Science of SNOLAB” Duncan, Noble & Sinclair
 - Ann. Rev. of Nucl. & Part. Science (60) 163-180, 2010
Support for Experiments

- Through a staff of ~55, SNOLAB Provides technical and administrative support to SNOLAB experiments:
 - design, construction, operations
 - background assay, science support
 - materials transport, cleaning, EH&S, training, procurement
- The Research team members can act as collaborators on experiments, providing operational and scientific support
- Infrastructure support is provided through development of shielding systems, mechanical supports, access, EH&S, etc.
- Services provided as standard to experiments includes life safety, power, ventilation, compressed air, ultra-pure water, liquid nitrogen, IT and networking
- Vale provide materials transport through the shaft, maintain the safety of the infrastructure, regulatory checks, etc.
 - SNOLAB currently has 50-80 people underground regularly, 3 dedicated cages
 - Cages integrated into Vale operations effectively (eg SNO D2O movement)
 - Double shifts maintained regularly
SNOLAB Operations costs

- Staff complement ~60
 - Cost ~$4M/yr
 - Note: additional support from University partners so NOT full project staff costs
 - 24hr/day operations not assumed

- Non-staff
 - Cost currently ~$3M/yr
 - Includes Vale charges ~$1M

- Project cash costs currently ~$7M/yr

- “In-kind”
 - If mining operations ceased, the equivalent contribution from Vale estimated ~$7-10M/yr:
 - Hoist, materials, service infrastructure, EH&S, drift maintenance, collar services, water+ventilation
 - University support ~$1M/yr
SNOLAB operational model

- For current facilities
 - Traditional NP “free-at-the-point-of-access” model
 - Canadian support for baseline operations of the facility, including life safety, power, ventilation, materials handling, compressed air, UPW, IT and networking
 - Experiments charged for additional ‘non-standard’ costs: significant transport, high power usage, significant gas/nitrogen
 - Experiments responsible for clean-room beyond C2000
 - Infrastructure negotiated: capital expected from experiments

- Based on current planned programme
 - If additional experiments incorporated immediately then additional installation and construction support would be required through the experiment for infrastructure
Project Lifecycle Planning

- Project lifecycle and interaction with facility well-defined
 - Structures and agreements under development
 - Q.A. under development
- International Experiment Advisory Committee (Stew Smith chair) helps to define programme
- H&S reviews integral to development and deployment
 - SNOLAB
 - Vale (if req’d)
- Workshop based approach to updated programme needs
 - e.g. material production/machining underground
SNOLAB Science Programme
Current programme:
Dark Matter at SNOLAB

- Noble Liquids: DEAP-I, MiniCLEAN, & DEAP-3600
 - Single Phase Liquid Argon using pulse shape discrimination
 - Prototype DEAP-I completed operation. Demonstration of PSD at 108.
 - Construction for DEAP-3600 and MiniCLEAN well advanced.
 - Will measure Spin Independent cross-section.

- Superheated Liquid / Bubble chamber: PICASSO, COUPP
 - Superheated droplet detectors and bubble chambers. Insensitive to MIPS radioactive background at operating temperature, threshold devices; alpha discrimination demonstrated;
 - COUPP-4 operation completed; PICASSO-III currently operational, COUPP-60 construction completed, in commissioning;
 - Measure Spin Dependent cross-section primarily, COUPP has SI sensitivity;
 - New world leading sensitivity published in 2012.

- Solid State: DAMIC, SuperCDMS
 - State of the art CCD Si / Ge crystals with ionisation / phonon readout.
 - DAMIC operational;
 - CDMS Currently operational in Soudan facility, MN. Next phase will benefit from SNOLAB depth to reach desired sensitivity.
 - Mostly sensitive to Spin Independent cross-section.
Current programme: 0νββ and neutrino at SNOLAB

- **SNO+**: 130Te \rightarrow 130Xe + e- + e-
 - Uses existing SNO detector. Heavy water replaced by scintillator loaded with 130Te. Modest resolution compensated by high statistical accuracy.
 - Requires engineering for acrylic vessel hold down and purification plant. Technologies already developed.
 - Will also measure
 - solar neutrino pep line (low E-threshold)
 - geo-neutrinos (study of fission processes in crust)
 - supernovae bursts (as part of SNEWS)
 - reactor neutrinos (integrated flux from Canadian reactors)

- **EXO-gas**: 136Xe \rightarrow 136Ba++ + e- + e-
 - Ultimate detector aim = large volume Xe Gas TPC
 - Developing technique to tag Ba daughter. Electron tracking capability.
 - Development work at SNOLAB surface facility

- **HALO**: Dedicated Supernova watch experiment
 - Charged/neutral current interactions in lead
 - Re-use of detectors (NCDs) and material (Pb) from other systems
 - Operational May 2012
 - Will form part of SNEWS array
The SNOLAB Science Programme

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Solar ν</th>
<th>0νββ</th>
<th>Dark Matter</th>
<th>Supernova ν</th>
<th>Geo ν</th>
<th>Other</th>
<th>Space allocated</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mining Data Centre</td>
<td>Surface Facility</td>
<td>Proposal</td>
</tr>
<tr>
<td>COBRA</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladder Labs</td>
<td>Request</td>
</tr>
<tr>
<td>COUPP-4</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J’-Drift</td>
<td>Operational</td>
</tr>
<tr>
<td>COUPP-60</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladder Labs</td>
<td>Construction</td>
</tr>
<tr>
<td>DAMIC</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J’-Drift</td>
<td>Operational</td>
</tr>
<tr>
<td>DEAP-1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J’-Drift</td>
<td>Operational</td>
</tr>
<tr>
<td>DEAP-3600</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cube Hall</td>
<td>Construction</td>
</tr>
<tr>
<td>EXO-gas</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladder Labs</td>
<td>Request</td>
</tr>
<tr>
<td>HALO</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Halo Stub</td>
<td>Operational</td>
</tr>
<tr>
<td>MiniCLEAN</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cube Hall</td>
<td>Construction</td>
</tr>
<tr>
<td>PICASSO-III</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladders Labs</td>
<td>Operational</td>
</tr>
<tr>
<td>PUPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seismicity</td>
<td>Various</td>
</tr>
<tr>
<td>SNO+</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td>SNO Cavern</td>
<td>Construction</td>
</tr>
<tr>
<td>SuperCDMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladder Labs</td>
<td>Request</td>
</tr>
<tr>
<td>U-Toronto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deep Subsurface Life</td>
<td>External Drifts</td>
</tr>
<tr>
<td>Current</td>
<td>DEAP-I, COUPP-4, COUPP-60, PICASSO-III, DAMIC (Dark Matter)</td>
<td>HALO, EXO-Gas (Neutrino)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013+</td>
<td>DEAP-3600, MiniCLEAN, (Dark Matter)</td>
<td>SNO+ (Neutrino)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014+</td>
<td>SuperCDMS (Dark Matter)</td>
<td>EXO Prototype (Neutrino)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Current**: DEAP-I, COUPP-4, COUPP-60, PICASSO-III, DAMIC (Dark Matter) and HALO, EXO-Gas (Neutrino).
- **2013+**: DEAP-3600, MiniCLEAN, (Dark Matter) and SNO+ (Neutrino).
- **2014+**: SuperCDMS (Dark Matter) and EXO Prototype (Neutrino).

Diagram:
- **Cube Hall**
- **Cryopit**
- **Unallocated as yet (MC use now)**
- **SuperCDMS Test Facility**
- **Halo Stub**
- **Utility Drift**
- **Ladder Labs**
- **SNO+**
- **SNO Cavern**
- **South Drift**
- **PUPS**
- **PICASSO-III**
- **DEAP-3600 MiniCLEAN**
- **COUPP-4**
- **COUPP-60**
- **SuperCDMS**
- **Low Background Tests**

Personnel facilities
A dungeon horrible, on all sides round...
No light; but rather darkness visible...

Paradise Lost - Milton (1668)