Geo-Neutrinos : a new probe of Earth's interior

>Geo-neutrinos and their detection

> Potential of Growing CdWO₄ crystals at USD

Study of CdWO₄ detectors at USD

≻Other Physics with CdWO₄ detectors

9/12/13

What are Geoneutrinos?

the antineutrinos produced by natural radioactivity in the Earth

radioactive decay of uranium, thorium and from potassium-40 produces antineutrinos

 \overline{v}_{e}

assay the entire Earth by looking at its "neutrino glow"

Uranium, Thorium and Potassium

Decay	$T_{1/2}$	E_{\max}	Q	$arepsilon_{ar{ u}}$	$arepsilon_{H}$
	$[10^9 { m yr}]$	[MeV]	[MeV]	$[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
$^{232}\mathrm{Th} \rightarrow ^{208}\mathrm{Pb} + 6~^{4}\mathrm{He} + 4e + 4\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
${}^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

from G. Fiorentini

- note: ⁴⁰K also has 10.72% EC branch
 - Q_{EC}=1.505 MeV
 - 10.67% to 1.461 MeV state ($E_v = 44 \text{ keV}$)
 - 0.05% to g.s. ($E_v = 1.5 \text{ MeV}$)
 - thus also emits v_e

0.0117% isotopic abundance

Asilomar, CA

Geo-neutrinos and their detection How to Detect Geoneutrinos

- inverse beta decay:
 - good cross section
 - threshold 1.8 MeV
 - uid scintillator has a lot of protons and h easily detect sub-MeV events layed coincidence signal $\tau = 0.2$ ms, neutron capture on H detect delayed 2.2 MeV γ rejects backgrounds e⁺ and n correlated in time and in position in the detector • liquid scintillator has a lot of protons and can easily detect sub-MeV events
 - delayed coincidence signal
 - $\tau = 0.2$ ms, neutron capture on H
 - detect delayed 2.2 MeV γ
 - rejects backgrounds
 - detector

 $\overline{v}_{\rho} + p \rightarrow e^+ + n$

figure from KamLAND Nature paper

2

Anti-neutrino energy, E, (MeV)

15

0.5

Asilomar, CA

3

3.5

Important Questions in Geosciences

- what is the planetary K/U ratio?
 - can't address until we can detect ⁴⁰K geoneutrinos
- radiogenic contribution to heat flow?
 - geoneutrinos can measure this
- radiogenic elements in the core?
 - in particular potassium!
- test fundamental models of Earth's chemical origin
- test basic models of the composition of the crust

material in subsequent slides from W.F. McDonough

Important Geoscience Questions

- test fundamental models of Earth's chemical origin
 - are measured fluxes consistent with predictions based upon the BSE?
 - so far yes, KamLAND 2008 measurement central value equals the BSE predicted flux
- test basic ideas of the composition of the crust
 - rock samples used to determine the composition of the crust
 - depth variations not easily sampled
 - are the basic ideas about the continents and how concentrations are enriched compared to the mantle correct?
 - it suggests measurements at a continental site and one that probes the mantle would be very interesting

• 0.05% to g.s. ($E_v = 1.5 \text{ MeV}$)

0.0117% isotopic abundance

Potassium Geo-neutrino Fluxes

- $(5-15) \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$ for the antineutrinos
- (5-15) × 10⁵ cm⁻² s⁻¹ for the 44 keV ν_e
- (2-6) × 10³ cm⁻² s⁻¹ for the 1.5 MeV ν_{e}
- compare to 1.44 MeV pep solar neutrinos 1.42×10^8 cm⁻² s $^{-1}$

you can probably forget about the V_e 's

¹⁰⁶Cd for Potassium Geo-neutrinos

- isotopic abundance 1.25%
- $0^+ \rightarrow 1^+$ allowed transition to the ¹⁰⁶Ag g.s.
- $Q_{\beta} = 194 \text{ keV}$, detectable e⁺ (1.02-1.12 MeV)
- followed by a $t_{\frac{1}{2}}=24 \text{ min EC decay (a big one)}$
 - can consider direct detection of reaction
 - could also consider radiochemical detection of Pd
 - it's a positron decay also! (not a tiny branch)
 - "double-positron" signature potentially distinctive

Cadmium Detectors

- CdWO₄ scintillating crystals
- ¹⁰⁶Cd enrichment possible (Kiev group has enriched ¹¹⁶Cd for double beta decay search)

In the next three slides, I will show the potential of growing CdWO₄ crystals at USD

Detector-Grade Germanium Crystal growth

Characterization

the dislocation density;

and their sources;

Success of detector-

grade crystal growth with the reduction of

spontaneous

contamination by

working guickly with

standardized procedures in a clean small working

area filled with hydrogen

Refinement

The removal of impurities contained in the starting materials has been done with a well-established zone refinement process.

Mobility: >25,000 cm²/Vs Resistivity: >1000 Ω cm Impurity: $< 2.5 \times 10^{11} / \text{cm}^3$ Measured at 77 K

Fabrication challenges have Axial crystalline included understanding growth structure mechanisms and microscopic

control of growth to achieve high quality crystals.

Dash-

nicking

13

ion

References:

solar panels.

gas.

1. D.-M. Mei et al., "Underground High-Purity Germanium Crystal Growth", submitted to the Journal of Crystal growth. Sign G. Yang, et al., Radial and axial impurity distribution in high-purity germanium crystals, Journal of Growth (2012), doi:10.1016/j.jcrysgro.2011.12.04

Dislocation density of 3.3x10³/cm²

Resistivity Measurements

	Resistivity (Ω+cm)		Carrier Conc	Carrier Concentration (cm ⁻³)		
Temperature	~300 K	77 K	~300 K	77 K		
Slice #1	56.6	27,450	5.3x10 ¹³	5.7x10 ^e		
Slice #2	47.9	22,760	-5.7 x1013	6.9x10 ^e		
Slice #3	54.4	32,260	-5.4x10 ¹³	4.8x10 ⁹		

^{3.7} cm #2 1.08 mm #3 1.64 mm #1 1.16 mm

SOUTH DAKOTA

Potential Impact 1. Breeding ultra-high sensitivity detectors for underground experiments. 2. Single-crystalline high-purity germanium crystals — are ideal for high sensitivity optoelectronic sensors and imaging system. 3. High-purity single crystals for electronic devices including transistors, diodes, fuel cells, sensors, etc. 4. High efficiency solar cells and

High-Purity Germanium Crystal Growth

Large size crystals with a diameter of ~10 cm

SURF

9/12/13

Study of CdWO₄ at USD CdWO₄ and CsI crystals

	CdWO ₄	CsI(Tl)
Density (g/cm ³)	7.9	4.51
Melting point (K)	1598	894
Thermal expansion coefficient (C ⁻¹)	10.2x10 ⁻⁶	0.54x 10 ⁻⁶
Hygroscopic	No	Slightly
Wavelength of emission max. (nm)	475	550
Lower wavelength cutoff (nm)	330	320
Refractive index @ emission max (nm)	2.2-2.3	1.79
Primary decay time	14 (µs)	1000 (ns)
Light yield (photons/ keV-γ)	12-15	54

Study of CdWO₄ at USD

•Source emits γ_{ray}

Enters crystal where its is absorbed and reemitted as scintillation light
Light enters PMT where it ejects an electron via the photoelectric effect, and induces a cascade of electrons
The resulting signal is read out to the computer from an Analog-To-Digital Converter

 $\gamma_{ray}\,\alpha$ Scintillation light α Signal Energy

Rise time calibration of CdWO₄ crystal

Rise Time: 14.933 µs

Flat top calibration of CdWO₄ crystal

Flat Top: 1.28 µs

•Peak v. Energy data inconclusive for 5mm CdWO₄ crystal

CdWO₄ Energy Resolution

•Energy Resolution data inconclusive for 5mm CdWO₄ crystal

Peak v. Energy and Energy Resolution for CsI (19mm) crystal

Comparing Peak v. Energy

CdWO₄ is more linear than CsI, showing that this crystal is more predictable.

Comparing Energy Resolution

CdWO₄ has a greater energy resolution for sources with higher energies and CsI with lower energies as seen through their exponential shape.

High Energy Results of Co60

Other physics with CdWO₄ detectors Backgrounds from Double Beta?

- actual double beta decay of ¹⁰⁶Cd produces both positrons at once
- antineutrino capture produces two positrons separated by $t_{\frac{1}{2}}=24 \text{ min}$
- how about accidental coincidences (24 min window)
 - ¹¹³Cd (12.2% isotopic abundance) β decay (Q = 320 keV)
 - 14.2 kHz (for 1 ton of ¹¹³Cd)
 - ¹¹⁶Cd (7.5% isotopic abundance) $\beta\beta$ decay (Q = 2.8 MeV)
 - 3.7 decays per second (for 1 ton of ¹¹⁶Cd)

high isotopic purity of ¹⁰⁶Cd is needed unless you have positron identification

Geo-neutrino Signal Rates ¹⁰⁶Cd

- Geo-neutrinos from 40 K is $\sim 10^6$ /cm²/s
- Inverse beta-decay cross section $\sim 10^{-44}$ cm²
- Enrich ¹⁰⁶Cd to 50%
- Detection efficiency of ~50%

in the few to \sim ten events per year per kiloton

Smaller volume but expensive project ~\$500M-\$1B

Summary

- ⁴⁰K geo-neutrino detection using ¹⁰⁶Cd
- ¹⁰⁶Cd could be made into scintillating crystals or semiconductor detectors
- distinctive "double-positron" signature
- USD can potentially grow crystals and make detectors