Double-Beta Decay: Experiments and Site Needs

> Jason Detwiler University of Washington CJPL Town Meeting, Asilomar, CA September 8, 2013

Majorana Neutrinos

- "Natural" models for small m_{ν}
- Connection to GUT-scale physics
- Implies L violation
- Allows for viable models of matter dominance
- Neutrinoless double-beta decay is currently the only viable probe

Sunday, September 8, 13

Inverted Hierarchy Sensitivity

Sunday, September 8, 13

Need To Go Deep

Astropart. Phys. 31 (2009) 277-283.

All isotopes are created equal...

0vββ Decay Experiments **GERDA**

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Operating
GERDA II	Ge-76	Point contact Ge in LAr or LN	30-35 kg	Construction
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	26 kg	Construction
1TGe (GERDA & MAJORANA)	Ge-76	Best technology from GERDA and MAJORANA	~ tonne	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	R&D
MOON	Mo-100	Mo sheets	200 kg	R&D
CAMEO	Cd-116	CdWO ₄ crystals	21 kg	R&D
COBRA	Cd-116, Te-130	CdZnTe detectors	10 kg	R&D
CUORICINO	Te-130	TeO ₂ Bolometer	11 kg	Complete
CUORE-0	Te-130	TeO ₂ Bolometer	11 kg	Operating
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
SNO+	Te-130	0.3% natTe in liquid scint.	800 kg	Construction
KamLAND-ZEN	Xe-136	2.7% in liquid scint.	370 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	80 kg	R&D
EXO-200	Xe-136	Xe liquid TPC	160 kg	Operating
nEXO	Xe-136	Xe liquid TPC	5 tonnes	R&D
DCBA	Nd-150	Nd foils & tracking chambers	32 kg	R&D

MAJORANA

Jason Detwiler

Complete

Construction

Operating

From J. F. Wilkerson

0vββ Decay Experiments

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF ₂ crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Operating
GERDA II	Ge-76	Point contact Ge in LAr or LN	30-35 kg	Construction
Majorana Demonstrator	Ge-76	Point contact Ge	26 kg	Construction
1TGe (GERDA & MAJORANA)	Ge-76	Best technology from GERDA and MAJORANA	~ tonne	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	R&D
MOON	Mo-100	Mo sheets	200 kg	R&D
CAMEO	Cd-116	CdWO ₄ crystals	21 kg	R&D
COBRA	Cd-116, Te-130	CdZnTe detectors	10 kg	R&D
CUORICINO	Te-130	TeO ₂ Bolometer	11 kg	Complete
CUORE-0	Te-130	TeO ₂ Bolometer	11 kg	Operating
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
SNO+	Te-130	0.3% natTe in liquid scint.	800 kg	Construction
KamLAND-ZEN	Xe-136	2.7% in liquid scint.	370 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	80 kg	R&D
EXO-200	Xe-136	Xe liquid TPC	160 kg	Operating
nEXO	Xe-136	Xe liquid TPC	5 tonnes	R&D
DCBA	Nd-150	Nd foils & tracking chambers	32 kg	R&D

MAJORANA

Jason Detwiler

Construction

Operating

From J. F. Wilkerson

EXO-200: LXeTPC

Jason Detwiler

PRL 109, 032505 (2012).

nEXO: ~150 cm (5 tonnes)

"As similar to EXO-200 as possible"

EXO-200:

40 cm

(200 kg)

- Upgrade path for Ba tagging
- Proposed for SNOLab cryo pit

14

nEXO Facility Requirements

- Uninterruptible power for cryogenics, controls, and communication
- Cooling: LN2 + chilled water
- Networking
- UG machine shop, including e-beam welding
- Chemical processing (etching)
- Shielding water

(quantitative figures available)

nEXO Schedule

Description	FY	FY	FY	FY	FY	FY	FY	FY	FY	FY	FY
Description	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
EXO-200 Low background run											
EXO-200 Ultra-low background run											
EXO-200 Detector R&D											
nEXO R&D											
Conceptual Design											
DOE CD-1			<	>							
Preliminary Design											
DOE CD-2					\diamond						
Final Design											
DOE CD-3							\diamond				
Long Lead Procurement											
Procurement, Fabrication and Assembly											
Installation											
Commissioning]
Ready for Operations											
DOE CD-4										<	
Xenon Procurement (5T enrichment)											

MAJORANA / GERDA

- ⁷⁶Ge modules in electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto
- DEMONSTRATOR: 30 kg ⁷⁶Ge and 10 kg ^{nat}Ge PPC xtals

- ⁷⁶Ge array submersed in LAr
- \bullet Water Cherenkov μ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg segmented xtals

Joint Cooperative Agreement:

Open exchange of knowledge & technologies (e.g. MaGe, R&D) Intention to merge for larger scale 1-tonne exp. Select best techniques developed and tested in GERDA and MAJORANA

GERDA Results

Jason Detwiler

21

Tonne-Scale Ge Options

Compact Two shields, each with 8 EFCu vacuum cryostats Cryogenic Vessel Diameter of water tank: ~11 m for LAr, ~15 m for LN (shown)

Conceptual Designs

Hybrid: EFCu cryostats suspended in LS or water

Conceptual Designs

Ge Facility Requirements

Space	Power	Water	Ventilation	Temp	Rn air	Clean room	IT needs	Other
Assembly room	Ave: 28 kW	High purity DI water			3 Bq/m ³	class 1000 or better	100 Mbs LAN	Compressed air, LN transport
Control Room	Ave: 42kW UPS: 4.2 kW			19-23 deg C	3 Bq/m ³		full IT + storage	
Cu/Pb Detector	included in assembly room	High purity water	LN exhaust	19-23 deg C	3 Bq/m ³	class 2000	100 Mbs LAN	need strong floor , compresed air
LAr Detector	included in assembly room	High purity water purification system	LN exhaust	19-23 deg C	3 Bq/m ³	class 2000	100 Mbs LAN	

Ge Facility Requirements

Space	Power	Water	Ventilation	Temp	Rn air	Clean room	IT needs	Other
Electroform Lab	136 kW UPS 5kW	Industrial tap water + HP DI water	exhaust Hydrogen from EF baths	19-23 (15%-60% humid)	3 Bq/m ³	class 2000, airlock entry	remote control and internet	spill containment lining - compressed air - Hazmat transport
Cu Cleaning lab	28 kW	HP water		19-23 (15%-60% humid)	1 Bq/m ³	class 100	remote control and internet	Hazmat transport
Machine Shop	107 kW peak 45 kW ave	HP water	30,000 cfm	Under investigation	3 Bq/m ³	class <10000	remote control and internet	compressed air
Storage Area				max 50% humid				

Hazards / Safety

- Cryogens: venting, O₂ deficiency, vacuum systems
- Chemical: hydrofluoric, sulfuric, and nitric acids for EFCu, etching
- HV systems

Tonne-Scale Ge Schedule

Backup Slides

Hints from Planck?

Discovery

Mechanism Determination

Jason Detwiler

CUORE

Jason Detwiler

CUORICINO

E. Andreotti et al., Astr. Phys. 34, 822 (2011)

Appendix I : Tonne Scale Ge Facility Needs Overview						
Description	Requirements	Interface point / notes				
general requirements (applies to all spaces unless otherwise noted)						
cleanliness	CLASS 2000 or better	structure, ductwork and lighting provided by facility with experimental input				
temp/ humidity	21°C±2°, 15-60%RH	all HVAC and associated maintenance provided by facility, except for internal local CLASS 200 and N2 purged areas built and maintained by experiment				
exhaust	TBD	by facility with experiment input. ODH will dictate larger throughput for L- cryogen option.				
Rn mitigated air	<3 Bq/m3	Rn mitigation system will be designed and installed by experiment if required				
phone/network	yes	wall jacks provided by facility				
detector and shielding hall	15-20m x 15-20m x 15-24m	liquid shield options only for this depth				
electrical power construction	50-75kW	electrical supply up to wall receptacles provided by facility, with input from experiment, options are Rn scrubbers, Welding receptacles for L-cryogen tank.				
electrical power operations	5-10kW	utility costs covered by facility				
standby power capacity	5kW	battery backup by experiment (short term), diesel generator by facility to maintain vacuum and cryogens.				
water	tap occ use, DI water 0-60 l/min	tap water supplied by facility, DI water system (to fill shield) by experiment.				
compressed air	occasional use	see mech room				
Shielding setup/laydown space	20m x 10m x 20m high	Need only during tank construction, could be less with creative installation				
Gowning / bathrooms / showers	10m x 15 m x 3m high	construction and utilities by facility, consumables by experiment				
Mechanical	7m x 15m x 3m high	HVAC, air compressor and water heater by facility, cryogen transfer and handling by experiment				
Cleanliness	No requirements	access must be controlled between this and clean ar				
Electrical Power Construction	30-50kW	HVAC blowers, small air compressor, water heater				
Electrical Power Operations	30-50kW	Mainly HVAC blowers				
Clean Room Control	8m x 15m x 3m high	(2nd story) control racks, monitoring and DAQ computers, desk space				
Electrical Power Construction	5-10kW					
Electrical Power Operations	5-10kW					
Standby power Capacity	5-10kW	battery backup only (by experiment)				
Clean fab / assembly	10-15m x 15m x 4m high	must be at cryostat loading level (ground level)				
Cleanliness	CLASS 200 or better	internal softside cleanroom (by experiment)				
LN	2001/day	boiloff or purge. Experiment provides ~2 large dewars /wk or UG generation facility				
Electrical Power Construction	5-10kW	Facility: room lighting and receptacles, experiment: custom lighting				
Electrical Power Operations	5-10kW					
TOTAL space requirements for	30-40m x 15-20m x 15-20m	range reflects uncertainty of shielding thickness requirements				
main experimental module	high					

Ge Facility Needs (cont.)

Other spaces					
e-forming lab	6m x 9m	included in MJD lab			
Exhaust	2000 CFM	facility provide exhaust, snorkel fitting on tanks by experiment			
Electrical Power construction	50kW	range for possible expansion of tanks for higher mass shield options			
Electrical Power operations	5-50kW	e-forming ramps down as operations ramp up			
Standby power capacity	5kW	battery UPS supplied by experiment			
Water	tap occ. use, DI water 0-5 1/min	tap water supplied by facility, DI water system by experiment			
Compressed air	Occasional use				
LN	201/day	boiloff only for cover gas, LN provided in dewars by experiment			
Clean Machine Shop	~12m x 8m	included in MJD lab, welder to be added near clean assembly			
Exhaust	2000 CFM	cutting fluid mist (non flammable, non toxic)/ particulate exhaust			
Electrical Power Construction	40-70kW	high estimate includes additional tools for 1T (large Mill, welder)			
Electrical Power Operations	4-25kW	moderate to very low duty cycle, depending on operations phase			
Water	tap occ. use, DI water 0-5 1/min	tap water supplied by facility, DI water system by experiment			
Compressed Air	Occasional use				
Surface lab	Details TBD	a few offices, and possible Cryogen transfer area (depending on shielding			
		choice, UG LN generation)			
Lift Services	1.5m x 3.5m x 2m high	200-300 trips for hardware (including L-Ar for tank option), ~daily trips for			
		personnel, ~weekly trip for cryogen			