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[Wilson	  1985;	  Bethe	  &	  Wilson	  1985]	  [Thompson	  et	  al.	  2003,	  Rampp	  &	  Janka	  
2002,	  	  Liebendoerfer	  et	  al.	  2002,2005]	  

•  Emission:	  Accelerated	  quadrupole	  bulk	  mass-‐energy	  mo2on.	  

G

c4
⇡ 10�49 s2 g�1 cm�1

Quadrupole	  approxima1on:	  

10 kpc ⇡ 3⇥ 1022 cm

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

-‐>	  For	  astrophysical	  sources,	  must	  measure	  rela1ve	  	  
	  displacements	  of	  <	  10-‐22	  

Details:	  See	  
Jay	  Marx’s	  and	  	  
Alan	  Weinstein’s	  
lectures	  tomorrow!	  
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Electromagne2c	  Waves	  

Neutrinos	  

Gravita2onal	  Waves	  

•  Time-‐changing	  aspherical	  mass-‐energy	  flux	  -‐>	  Gravita1onal	  Waves	  

•  Some	  back	  of	  the	  envelope	  physics:	  	  
We	  can	  es2mate	  the	  frequency	  at	  which	  GWs	  are	  emi6ed!	  
Free	  fall	  1me	  of	  a	  	  
self-‐gravita1ng	  
system	  

•  Example:	  	  Volumetric	  mean	  density	  of	  the	  inner	  supernova	  core	  
around	  bounce	  is	  1013	  g/cm3	  -‐>	  fGW	  will	  be	  of	  order	  1000	  Hz!	  
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Recent	  reviews:	  Oi	  ‘09,	  Kotake	  ‘11,	  Fryer	  &	  New	  ‘11	  
Need:	  

accelerated	  aspherical	  (quadrupolar)	  
mass-‐energy	  mo1ons	  

Candidate	  Emission	  Processes:	  
v  Convec1on	  and	  SASI	  
v  Rota1ng	  collapse	  &	  bounce	  
v  Rota1onal	  3D	  instabili1es	  
v  Black	  hole	  forma1on	  

v  Pulsa1ons	  of	  the	  protoneutron	  star	  
v  Anisotropic	  neutrino	  emission	  
v  Aspherical	  accelerated	  ou�lows	  
v  Magne1c	  stresses	  
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FIG. 3: Snapshots of the meridional density distribution with
superposed velocity vectors in model u75rot1 taken at various
times. The top left panel (note its special spatial range) shows
a snapshot from 10ms after bounce. The top right and bot-
tom left panels show the point of PNS instability and the time
at which the AH first appears, respectively. The bottom right
panel, generated with a separate color range, shows the hy-
peraccreting BH at ⇠ 15ms after its formation. All colormaps
have density isocontours superposed at densities (from outer
to inner) of ⇢ = (0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0)⇥1010 g cm�3.

roughly with ⌦2

0

.
Once dynamical PNS collapse sets in, an apparent

horizon (AH) appears within ⇠1 ms and quickly engulfs
the entire PNS. With the PNS and pressure support re-
moved, postshock material and the shock itself immedi-
ately subside into the nascent BH. The bottom panel of
Fig. 2 shows the evolution of BH mass and dimensionless
spin a? in all models. The former jumps up as the AH
swallows the PNS and postshock region, then increases
at the rate of accretion set by progenitor structure and
is largely una↵ected by rotation at early times. The di-
mensionless spin reaches a local maximum when the BH
has swallowed the PNS core, then rapidly decreases as
surrounding lower-j material plunges into the BH. This
is a consequence of the drop of j at a mass coordinate
close to the initial BH mass (cf. Fig. 1). Table I summa-
rizes for all models the values of a? at its peak and at the
time we stop the LR run.

In Fig. 3, we plot colormaps of the density in the merid-
ional plane of the spinning model u75rot1 taken at var-
ious postbounce times. The rotational flattening of the
PNS is significant and so is the centrifugal double-lobed
structure of the post-BH-formation hyperaccretion flow.
The latter is unshocked and far sub-Keplerian with in-

0 20 40 60 80 100 120 140
t� tbounce [ms]

1

2

3

f
[k

H
z]

u75rot2

�3 �2 �1 0 1 2 3
log |Dh̃+,e|2

�400

�200

0

200

D
h +

,e
[c

m
]

DhCCE
+,e u75rot1

DhCCE
+,e u75rot1.5

DhCCE
+,e u75rot2

�1.6 �0.8 0.0 0.8 1.6
t� tBH [ms]

�400

�200

0

200

FIG. 4: Top: GW signals h+,e emitted by the rotating mod-
els as seen by an equatorial observer and rescaled by distance
D. The inset plot shows the strong burst associated with BH
formation and ringdown. The full waveforms are available
from http://www.stellarcollapse.org/gwcatalog. Bot-
tom: Spectrogram of the GW signal emitted by the most
rapidly spinning model u75rot2.

flow speeds of up to 0.5c near the horizon. The flow will
be shocked again only when material with su�ciently
high specific angular momentum to be partly or fully cen-
trifugally supported reaches small radii (cf. [14]). Based
on progenitor structure, our choice of rotation law, and
the assumption of near free fall, we estimate that this
will occur after ⇠1.4 s, ⇠2.4 s, ⇠3.9 s in model u75rot2,
u75rot1.5, u75rot1, respectively. At these times, the
BHs, in the same order, will have a mass (a?) of ⇠8 M�
(0.75), ⇠14 M� (0.73), and ⇠23 M� (0.62).

GW Signature.—The top panel of Fig. 4 depicts the
GW signals emitted by our rotating models. Due to the
assumed octant symmetry, GW emission occurs in the
l = 2, m = 0 mode. The nonrotating model leads to
a very weak GW signal and is excluded. At bounce, a
strong burst of GWs is emitted with the typical signal
morphology of rotating core collapse (e.g., [23]) and the
peak amplitude is roughly proportional to model spin.
Once the bounce burst has ebbed, the signal is domi-
nated by emission from turbulence behind the shock. It
is driven first by the negative entropy gradient left by the
stalling shock and then by neutrino cooling, whose e↵ect
may be overestimated by our simple treatment. Interest-
ingly, the signal strength increases with spin. This is not
expected in a rapidly spinning ordinary 2D CCSN, since
a positive j gradient in the extended postshock region
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At this point, it is useful to define for future reference the
dimensionless characteristic GW strain (Flanagan & Hughes
1998), in terms of the GW spectral energy density,

hchar =

√
2
π2

G

c3

1
D2

dEGW

df
. (17)

For signals with relatively stable frequencies and amplitudes,
Fourier transforms and their energy spectra are adequate fre-
quency analysis tools. However, for signals with time-varying
amplitudes and frequencies, a short-time Fourier transform
(STFT) is more appropriate. The STFT of A(t) is

S̃(f, τ ) =
∫ ∞

−∞
A(t) H (t − τ ) e−2π if t dt, (18)

where τ is the time offset of the window function, H (t − τ ). We
use the Hann window function:

H (t − τ ) =






1
2

(
1 + cos

(
π(t−τ )

δt

))
for |t − τ | ! δt

2
0 for |t − τ | >

δt

2

,

(19)
where δt is the width of the window function. The analog of the
energy spectrum of the Fourier transform is the spectrogram,
|S̃(f, τ )|2. Using the spectrogram, we define an analog to the
energy emission per frequency interval (Equation (15)):

dE∗
GW

df
(f, τ ) = 3

5
G

c5
(2πf )2|S̃(f, τ )|2 . (20)

We emphasize that the GW strains reported in this paper
are based upon matter motions alone and do not include the
low-frequency signal that results from asymmetric neutrino
emission (Burrows & Hayes 1996; Müller & Janka 1997).
Accurate calculations of asymmetric neutrino emission require
multi-dimensional, multi-angle neutrino transport to capture
the true asymmetry of the neutrino radiation field (see, e.g.,
Ott et al. 2008). Our choice to parameterize the effects of
neutrino transport by local heating and cooling algorithms is
based upon assumptions of transparency, which ignore diffusive
effects and would exaggerate the asymmetries and resulting
GWs. For example, Kotake et al. (2007) estimated the neutrino
GW signal using a similar heating and cooling parameterization
and obtained GW strain amplitudes that are ∼100 times the
matter GW signal. However, with an improved ray-tracing-
based method, the same authors find much smaller amplitudes
that are larger than those due to matter motions by only a
factor of a few (Kotake et al. 2009). This is in agreement with
the GW estimates of Marek et al. (2009) who used 1D ray-
by-ray neutrino transport and coupled neighboring rays in 2D
hydrodynamic simulations.

Studying the matter GW signal alone is worthwhile. Although
the neutrino GW strain amplitudes can be as large or even larger
than the contribution by matter (Burrows & Hayes 1996; Müller
& Janka 1997; Müller et al. 2004; Marek et al. 2009), the typical
frequencies, f, of the neutrino GW signal (∼10 Hz or less) are
typically much lower than the frequencies of the matter signal
("100 Hz). Consequently, the GW power emitted, which is
proportional to f 2, can be much higher for the matter GW signal.
Furthermore, although future GW detectors (e.g., Advanced
LIGO) will have improved sensitivity at low frequencies, current
detectors have response curves that are not sensitive to the lower
frequencies of the neutrino GW signal.

Figure 2. Sample of GW strain (h+) times the distance, D, vs. time after
bounce. This signal was extracted from a simulation using a 15 M% progenitor
model (Woosley & Heger 2007) and an electron-type neutrino luminosity of
Lνe = 3.7 × 1052 erg s−1. Prompt convection, which results from a negative
entropy gradient left by the stalling shock, is the first distinctive feature in the
GW signal from 0 to ∼50 ms after bounce. From ∼50 ms to ∼550 ms past
bounce, the signal is dominated by PNS and postshock convection. Afterward
and until the onset of explosion (∼800 ms), strong nonlinear SASI motions
dominate the signal. The most distinctive features are spikes that correlate with
dense and narrow down-flowing plumes striking the “PNS” surface (∼50 km).
Around ∼800 ms, the model starts to explode. In this simulation, the GW
signal during explosion is marked by a significant decrease in nonlinear SASI
characteristics. The aspherical (predominantly prolate) explosion manifests in a
monotonic rise in h+D that is similar to the “memory” signature of asymmetric
neutrino emission.

3.2. Signatures in the GW Strain

In Figure 1, we plot the GW strain (Equation (13)) times the
distance to a 10 kpc source, h+D, versus time after bounce for
all simulations. Though there is some diversity in amplitude and
timescale among these GW strains, there are several recurring
features that exhibit systematic trends with mass and neutrino
luminosity. We illustrate these features in Figure 2 with the
GW strain of the simulation using the 15 M% progenitor and
Lνe

= 3.7 × 1052 erg s−1. Before bounce, spherical collapse
results in zero GW strain. Just after bounce the prompt shock
loses energy and stalls, leaving a negative entropy gradient that
is unstable to convection. Because the speeds of this prompt
convection are larger than those of steady-state postshock or
PNS convection afterward, the GW strain amplitude rises to
h+D ∼ 5 cm during prompt convection and settles down to
∼1 cm roughly 50 ms later, which is consistent with the results
of Ott (2009b) and Marek et al. (2009). Later in this section, we
show that during both phases, convective motions in postshock
convection above the neutrinosphere and PNS convection below
it contribute to the GW strain. Since nonlinear SASI oscillation
amplitudes increase around 550 ms past bounce, the GW signal
strengthens from h+D ∼ 1 to 10 cm and is punctuated by
spikes that are coincident in time with narrow plumes striking
the PNS “surface” (at ∼50 km). Marek et al. (2009) also noted
this correlation.

The final feature after ∼800 ms is associated with explosion.
The signatures of explosion are twofold. First, during explosion,
postshock convection and the SASI subside in strength and the
higher frequency (∼300–400 Hz) oscillations in h+D diminish.
Second, global asymmetries in mass ejection result in long-term
and large deviations of the GW strain. In Figure 2, a monotonic
rise of h+D to nonzero, specifically positive, values corresponds

•  Prompt	  convec1on	  soon	  a�er	  bounce	  (Marek+	  ‘09,	  Oi	  ‘09).	  
•  Neutrino-‐driven	  convec1on	  &	  SASI	  (recent:	  Murphy+’09,	  Yakunin+10,	  Müller+12).	  
•  Protoneutron	  star	  convec1on	  (e.g.,	  Keil+	  ’96,	  Müller+’04)	  

Murphy+	  ’09,	  
using	  simplified	  
hea1ng/cooling	  
scheme.	  

Expect	  also:	  
Correla1ons	  with	  
neutrino	  signal.	  
Lund+	  ’10,’12,	  	  
Marek+’09,	  Brandt+’11	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  
2013	  
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Murphy,	  Oi,	  Burrows	  ’09,	  see	  also	  B.	  Müller+‘13	  

fp ⇠ !BV

2⇡

Peak	  emission	  
traces	  buoyancy	  	  
frequency	  at	  	  
proto-‐NS	  edge.	  
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Oi+13,	  	  
ApJ	  768:115	  
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Figure 14. Left panel: Gravitational wave polarizations h+D and h⇥D (rescaled by distance D) of model s27 fheat1.05 as a function of postbounce time seen
by and observer on the pole (✓ = 0,' = 0; top panel) and on the equator (✓ = ⇡/2,' = 0; bottom panel). Right panel: The same for model s27 fheat1.15. Both
models show a burst of gravitational waves associated with large-scale prompt convection developing shortly after bounce. Subsequently, gravitational wave
emission comes from aspherical flow in the gain layer, in the outer protoneutron star, and from descending plumes of material that are decelerated at the edge of
the protoneutron star. The gravitational wave signals are trending towards higher frequencies with time.
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Figure 15. Characteristic spectral strain spectra hchar( f ) f -1/2 of all four
models at a distance of 10kpc compared with the design noise levels

p
S( f ) of

Advanced LIGO in the broadband zero-detuning high-power mode (aLIGO
ZD-HP), KAGRA, and Advanced Virgo in wideband mode (AdV WB).

all amplitudes agree well, but peak in different viewing direc-
tions. The subsequent evolution of the GW signals is similar
in both models, both polarizations, and both observer posi-
tions. After an intermittent quiescent phase, GW emission
picks up again at times &80ms after bounce when aspherical
dynamics becomes strong throughout the entire postshock re-
gion (cf. Fig. 9). In this phase, the GW emission transitions
to higher frequencies, indicating that emission from deceler-
ation of downflows at the steep density gradient at the edge
of the protoneutron star (as first pointed out by Murphy et al.
2009) and convection in the protoneutron star play an increas-
ing role. While both models have expanding shocks at the end
of their simulations, the shock acceleration has not become
sufficiently strong to lead to an offset in the GW signal (GW
memory) seen in other work that followed exploding models
to later times (e.g., Murphy et al. 2009; Yakunin et al. 2010;
E. Müller et al. 2012; Kotake et al. 2009, 2011).

The peak GW strain amplitudes reached in our models are
from prompt convection and go up to |h|D ⇠20cm (⇠6.5 ⇥
1022 at 10kpc). Scheidegger et al. (2010) found |h|D ⇠10cm
and Fryer et al. (2004) found |h|D ⇠12cm, but we note that
the GW signal will depend on the strength of prompt convec-
tion, which is different from model to model. The approaches
of E. Müller et al. (2012) and Kotake et al. (2009, 2011) do
not allow them to study prompt convection. The typical am-
plitudes reached in the preexplosion phase are ⇠3cm (⇠10-22

at 10kpc). This is comparable to, but somewhat larger than
what E. Müller et al. (2012) found in the preexplosion phase
of their models. This may be due the different progenitor
models used and/or to the rather large inner boundary radius
of their models in the preexplosion phase. Our typical |h| are
also quantitatively consistent with the findings of the simpler
3D simulations of Scheidegger et al. (2010) and Kotake et al.
(2009, 2011), but are a factor of a few smaller than predictions
from 2D simulations (e.g., Marek et al. 2009; Yakunin et al.
2010; Murphy et al. 2009).

Figure 15 contrasts the angle-averaged characteristic GW
strain spectra hchar( f ) (Flanagan & Hughes 1998) of our
models with the broadband design noise levels of advanced-
generation GW interferometers, assuming a source distance
of 10kpc. The spectra are scaled with a factor of f -1/2 to
allow one-to-one comparison with the detector one-sided am-
plitude spectral noise density

p
S( f ), which has units of Hz1/2.

Most of the detectable emission is within ⇠60 - 1000Hz and
at essentially the same level of ⇠2-6⇥10-23 Hz-1/2. A galac-
tic event (at 10kpc) appears to be well detectable by the
upcoming generation of detectors. All four models, while
having distinct individual h+ and h⇥ time series that vary
greatly in the time domain, exhibit essentially the same ro-
bust spectral features, independent of fheat and the exact post-
bounce time the individual models are evolved to. The low-
frequency to intermediate-frequency emission is most likely
due to prompt convection in the early postbounce phase, while
the high-frequency peaks at ⇠400Hz and ⇠900Hz are most
likely due to the deceleration of downflows at the protoneu-
tron star surface and protoneutron star convection. A more

Can	  we	  observe	  GWs	  from	  Core-‐Collapse	  Supernovae?	  

detector	  
noise	  curves	  

~! ¼ ffiffiffiffi
"

p
W! ¼ D̂, because (i) this is the conserved density

variable in our code, and (ii)
ffiffiffiffi
"

p
d3x is the natural volume

element.
The reduced mass-quadrupole tensor can be computed

directly from the computed distribution D̂ðt;xÞ. Numerical
noise, introduced by the second time derivative of Eq. (3),
may limit the accuracy of the result. We can circumvent
this by making use of the continuity equation to obtain the
first time derivative of Eq. (3) without numerical differen-
tiation [98,99],

d

dt
Ijk ¼

Z
D̂ðt;xÞ

"
~vjxk þ ~vkxj % 2

3
ðxl~vlÞ#jk

#
d3x; (4)

where we follow [100] and employ physical velocity
components ~vi& f~vx; ~vy; ~vzg' f ffiffiffiffiffiffiffi

"11
p

v1;
ffiffiffiffiffiffiffi
"22

p
v2;

ffiffiffiffiffiffiffi
"33

p
v3g

that are individually bound to v < c. This assumes that
the 3-metric is nearly diagonal (which is the case in our
gauge; see [77]). Also note that we have switched to
contravariant variables in the integrand as these are the
ones present in the code. This is possible since in the weak-
field slow-motion approximation the placement of indices
is arbitrary.

The two dimensionless independent GW strain polar-
izations hþ and h( incident on a detector located at
distance D and at angular coordinate ð$;%Þ in source
coordinates are given by

hþ % ih( ¼ 1

D

X1

‘¼2

X‘

m¼%‘

H‘mðtÞð%2ÞY‘mð$;%Þ; (5)

where ð%2ÞY‘m are the spin-weighted spherical harmonics
of weight%2 [101] and theH‘m are expansion coefficients,
which, in the quadrupole case, are related to the second
time derivative of the mass-quadrupole tensor by

Hquad
20 ¼

ffiffiffiffiffiffiffiffiffi
32&

15

s
G

c4

$
€Izz %

1

2
ð €Ixx þ €IyyÞ

%
; (6)

Hquad
2)1 ¼

ffiffiffiffiffiffiffiffiffi
16&

5

s
G

c4
ð* €Ixz þ i €IyzÞ; (7)

Hquad
2)2 ¼

ffiffiffiffiffiffiffi
4&

5

s
G

c4
ð €Ixx % €Iyy * 2i €IxyÞ: (8)

The rotating core-collapse models considered in this
study stay almost perfectly axisymmetric in the collapse
and early postbounce phases. In axisymmetry about the z
axis, Ixx ¼ Iyy ¼ % 1

2 Izz and Ixy ¼ Ixz ¼ Iyz ¼ 0. h( van-
ishes and hþ becomes

hþ ¼ G

c4
1

D

3

2
€Izzsin

2$: (9)

We will generally plot hþD in units of centimeters when
displaying gravitational waveforms.

The energy emitted in gravitational waves is given by

EGW ¼ 1

5

G

c5

Z 1

%1
dtI
:::
ijI
:::
ijdt

¼ 1

5

G

c5

Z 1

%1
dt½I:::2xx þ I

:::2
yy þ I

:::2
zz þ 2ðI:::2xy þ I

:::2
xz þ I

:::2
yzÞ,:

(10)

In the special case of axisymmetry and in terms of
hþ;e ¼ hþ=sin

2$, this becomes

Eaxi
GW ¼ 2

15

c3

G5
D2

Z 1

0
dt
$
d

dt
hþ;e

%
2
: (11)

The spectral GW energy density is given by

dEGW

df
¼ 2

5

G

c5
ð2&fÞ2j~€Iijj2; (12)

so that

EGW ¼
Z 1

0
df

dEGW

df
: (13)

In the above, we have introduced the Fourier transform of

the mass-quadrupole tensor, ~€IijðfÞ, and denoted it with a
tilde accent.
In axisymmetry, the spectral GW energy density is

related to hþ;e by

dEaxi
GW

df
¼ 4

15

c3

G
D2ð2&fÞ2j~hþ;ej2: (14)

When showing the spectral energy density, we will plot the
dimensionless characteristic strain [102],

hcharðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

&2

G

c3
1

D2

dEGWðfÞ
df

s
; (15)

which can be compared to the GW detector root-mean-
squared noise,

hrmsðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fSðfÞ

q
; (16)

where
ffiffiffiffiffiffiffiffiffi
SðfÞ

p
is the one-sided detector noise amplitude

spectral density in units of ðHzÞ%1=2. For making rough
statements about detectability, we use the single-detector
optimal-orientation signal-to-noise ratio, which is given by

ðSNRÞ2 ¼
Z 1

0
d lnf

h2char
h2rms

: (17)

Note that we cut the calculation of integrals in the
Fourier domain at 3000 Hz to filter out numerical high-

frequency noise. Wherever we need
ffiffiffiffiffiffiffiffiffi
SðfÞ

p
, we employ the

projected broadband Advanced LIGO noise curve [the so-
called zero-detuning, high-power configuration (ZD-HP)],
available as file ZERO_DET_high_P.txt from [103].
For quantifying the difference between two gravitational

waveforms h1ðtÞ and h2ðtÞ, we introduce the mismatch
[104,105],
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024026-7

EGW & 4⇥ 10�10 M�c
2



GWs	  from	  Rota2ng	  Collapse	  &	  Bounce	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	   123	  

Rapid	  rota1on:	  	  
Oblate	  deforma1on	  of	  the	  inner	  core	  

Recent	  work:	  Dimmelmeier+	  ’08,	  Scheidegger+	  ‘10,	  Oi+	  ’12,	  Kuroda+	  ‘13	  

•  Most	  extensively	  studied	  
GW	  emission	  in	  core	  collapse	  

•  Axisymmetric:	  ONLY	  h+	  
•  Simplest	  GW	  emission	  process:	  
Rota2on	  +	  Gravity	  	  +	  	  	  
S2ffening	  of	  nuclear	  EOS.	  

•  Strong	  signals	  for	  rapid	  rota1on	  
(-‐>	  millisecond	  proto-‐NS).	  



GWs	  from	  Rota2ng	  Collapse	  &	  Bounce	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	   124	  

Rapid	  rota1on:	  	  
Oblate	  deforma1on	  of	  the	  inner	  core	  

Recent	  work:	  Dimmelmeier+	  ’08,	  Scheidegger+	  ‘10,	  Oi+	  ’12,	  Kuroda+	  ‘13	  

•  Most	  extensively	  studied	  
GW	  emission	  in	  core	  collapse	  

•  Axisymmetric:	  ONLY	  h+	  
•  Simplest	  GW	  emission	  process:	  
Rota2on	  +	  Gravity	  	  +	  	  	  
S2ffening	  of	  nuclear	  EOS.	  

•  Strong	  signals	  for	  rapid	  rota1on	  
(-‐>	  millisecond	  proto-‐NS).	  



125	  C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

Movie	  by	  
Steve	  Drasco	  
(Grinnell/Caltech)	  

40
	  k
m
	  

Oi+12	  



126	  

Can	  we	  observe	  this?	  
23

When linearly extrapolating the postbounce T/|W |
growth in the j5 models under the simplifying assumption
that the angular momentum of the accreting material is
approximately constant in time, we find that a T/|W | of
27%, the approximate threshold for the guaranteed dy-
namical bar-mode instability, is reached at ⇠300 ms after
bounce. Even if accretion stops, cooling and contraction
of the PNS to final NS form will likely lead to T/|W |
in excess of the dynamical instability threshold in the
j5, j4, and even in the j3 models (see, e.g., the mapping
of initial core spin to final NS spin in [15]), unless an-
gular momentum is being redistributed or radiated by
some other mechanism, e.g., the low-T/|W | instability,
the secular instability, or MHD processes.

E. Notes on Detectability

1. Gravitational Waves

In the rightmost five columns of Tab II, we summarize
key quantities describing the GW emission characteris-
tics of the simulated models: the peak of the GW signal
amplitude time series (|h+|maxD) as seen by an equato-
rial observer rescaled by distance D, the emitted energy
in GWs (EGW), the peak value of the dimensionless char-
acteristic strain (hchar,max(f); Eq. 17) in frequency space
and at an equatorial observer location of 10 kpc, the fre-
quency fchar,max at which hchar,max is located, and the
single-detector Advanced LIGO optimal signal-to-noise
ratio (SNR) as calculated using Eq. 19 for a core col-
lapse event at 10 kpc, the fiducial galactic distance scale.
In the following, we focus exclusively on the physically
more realistic models that include neutrino leakage. Fur-
thermore, as discussed in Section V C, the 12-M� and
the 40-M� progenitors lead to very similar GW emission
in the phases that we simulate and we do not discuss
them separately.

The peak GW signal amplitudes of our models lie in
the range 20 cm . |h+|maxD . 400 cm, which corre-
sponds to 7 ⇥ 10�22 . |h+|max . 1.3 ⇥ 10�20 at 10 kpc
and is fully consistent with the results of [44], who also
focused on the linearly polarized GW signal from core
bounce and early postbounce evolution, but did not in-
clude postbounce neutrino leakage. The lowest peak am-
plitudes are reached in nonrotating (j0) or slowly rotat-
ing (j1) models, in which the emission is primarily due
to prompt convection. The highest amplitudes are emit-
ted by the most rapidly spinning models (j4 and j5). A
further increase of precollapse rotation would not result
in significantly higher peak amplitudes, since j5 models
are already strongly a↵ected by centrifugal e↵ects, which
reduce the acceleration the inner core is experiencing at
bounce, thus lead to lower GW amplitudes when rotation
begins to dominate the dynamics.

The total energy emitted in GWs is in the range
2.7 ⇥ 10�11M�c

2 . EGW . 4.7 ⇥ 10�8M�c
2. Again the

nonrotating and slowly rotating models mark the lower
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FIG. 13: Comparison of projected Advanced LIGO broad-
band (aLIGO ZD-HP – zero-detuning, high-power) [103], KA-
GRA/LCGT [127], and potential Advanced Virgo wide-band
(AdV WB) [128] sensitivity with the characteristic GW am-
plitudes h

char

(f)f�1/2 of the s12WH07j{0-5} model set at a
source location of 10 kpc.

end of this range. The upper end is set by the j4 mod-
els, since the j5 models, due to the strong influence of
rotation, have more slowly varying waveforms and lower
EGW (EGW / R

(dh/dt)2dt; Eq. 11).
Comparing our model predictions with GW detector

sensitivity is done best in the frequency domain. In
Fig. 13 we contrast hchar(f) spectra of our s12WH07j{0-
5} model set with the projected noise levels in Advanced
LIGO (in the zero-detuning, high-power configuration
[103]; aLIGO ZD-HP), KAGRA/LCGT [127], and Ad-
vanced Virgo (AdV) in a potential wide-band configura-
tion [128]. Shown are the one-sided detector noise am-
plitude spectral densities

p
S(f) in units of Hz�1/2 and

hcharf
�1/2 of our models (the f�1/2 rescaling is intro-

duced to to conform to the units of
p

S(f)), assuming
a source distance of 10 kpc. hchar peaks in a narrow fre-
quency range of about 700� 800 Hz for all rotating mod-
els. Slowly spinning models typically have their hchar

peak at the high end of this range and the frequencies of
their spectral peaks are influenced primarily by the prop-
erties of the nuclear EOS (not studied in detail here; see
[44]). Very rapidly spinning models tend towards the
lower end and develop strong low-frequency components,
which almost reach the level of the peak around 750 Hz
in model s12WH07j5.

The hchar spectra of all models shown in Fig. 13 have
large portions that lie above the detector noise levels.
By integrating the ratio h2

char(f)/(fS(f)) over frequency
(Eq. 19) and using S(f) of Advanced LIGO in ZD-HP
mode [103], we arrive at single-detector optimal (i.e.,
most optimistic) SNRs at an assumed distance of 10 kpc
that range from ⇠6 for the nonrotating model j0 to ⇠73

Gravita2onal	  Waves	  

-‐>	  Throughout	  Milky	  Way	  
	  with	  aLIGO	  

EGW . 10�8M�c
2

Oi+	  ‘12,	  PRD	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  



127	  
O6+11	  

3+1	  GR	  
simula2on,	  
simplified	  
microphysics	  
u75	  progenitor	  
of	  Woosley+02	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  



Gravita1onal	  Waves	  from	  BH	  Forma1on	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

128	  C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  
O6+	  ’11,	  PRL	  

Rota2ng	  
Black	  Hole	  	  
Forma2on	  

10�7 M� c2
EGW ⇠

But:	  
observable	  
only	  for	  
nearby	  
(galaxy/SMC/	  
	  LMC	  events)	  



129	  

Neutron	  Stars	  &	  Constraints	  on	  the	  
Nuclear	  Equa2on	  of	  State	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

hip://www.clccharter.org/maya1/Supernova/Neutron-‐Artwork.jpg	  



130	  

Evolu2on	  from	  Proto-‐NS	  to	  NS	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

Evolution of a Neutron Star 365

(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc ! 0.7 M! in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino
losses and deleptonization will have led to a loss of lepton pressure and the col-
lapse of the mantle. If enough accretion occurs, however, the star’s mass could

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.

(Figure:	  Prakash+01)	  •  98%	  of	  neutrino	  energy	  	  
emiied	  within	  the	  first	  minute.	  

(crust	  forms)	  

•  Cooling	  dominated	  by	  neutrinos	  for	  ~105	  –	  106	  yrs.	  
•  Late	  1me	  cooling:	  
Sensi1ve	  to	  composi1on	  and	  superfluidity.	  
(see	  Page+13	  for	  detailed	  discussion)	  
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thermal equilibrium and keeps the surface relatively warm (T ≈ 3 × 106 K) for
up to 100 years (stage 5). This timescale is primarily sensitive to the neutron
star’s radius and the thermal conductivity of the mantle [7], as can be noted from
the approximate diffusive relationship τ ∝ ∆R2/λ, where ∆R is the thickness
of the crust. If the rapid decrease in the star’s surface temperature predicted to
occur when thermal equilibrium is ultimately achieved (see Fig. 16 in Section
6), a valuable constraint on the thickness of the crust, and hence the neutron
star radius, could be obtained. The temperature of the surface after the interior
of the star becomes isothermal (stage 6) is determined by the rate of neutrino
emission in the star’s core. The magnitude of the rate is primarily determined by
the question of whether or not one or more of the so-called direct Urca processes
can occur. The basic Urca process

n → p + e− + ν̄e; p → n + e+ + νe (1)

operates even in degenerate matter because at finite temperature some of the
nucleons are in excited states. In addition, direct Urca process involving hyper-
ons, Bose condensates and quarks are also possible. In general, the direct Urca
rate is proportional to T 4, and is so large that the surface temperatures fall to
just a few times 105 K, which becomes very difficult to observe in X-rays ex-
cept for very nearby stars. A relatively high surface temperature, closer to 106

K, will persist, however, if an Urca process can only occur indirectly with the
participation of a spectator nucleon – the modified Urca process , which in the
case of nucleons is

n + (n, p) → p + (n, p) + e− + ν̄e; p + (n, p) → n + (n, p) + e+ + νe , (2)

and leads to the so-called standard cooling scenario.
However, there are two circumstances that could prevent the direct Urca

process from occurring. First, if the composition of the matter is such that the
momentum triangle involving the non-neutrino particles cannot be closed, mo-
mentum conservation disallows this process. This occurs, in the case of n, p, e,
for example, if the p and e− abundances, which must be equal, are less than
1/8 the n abundance. This would be the case if the nuclear symmetry energy
has a relatively weak density dependence. In addition, direct Urca processes in-
volving hyperons, a Bose condensate, or quarks would not occur, of course, if
they are not present. Second, direct Urca processes are suppressed if one of the
reactants becomes superfluid. In this case, when the core temperature falls be-
low the superfluid’s critical temperature, the rapid cooling is terminated. In the
case of a superfluid, the core cooling, and therefore the surface temperature, will
be intermediate between those predicted by standard and rapid cooling models.
Neutrino emission continues to dominate until neutron stars are approximately 1
million years old, at which point photon cooling from the surface begins to dom-
inate. Unless the interiors cool very rapidly, X-ray emissions from stars remain
relatively high until the photon cooling epoch.

Several neutron stars have been suggested to have observable thermal emis-
sions in X-rays. In addition, the nearby neutron star RX J185635-3754, which
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discovered. Measurements of radio pulsars and neutron stars in X-ray binaries com-
prise most of the neutron star observations. Improved data on isolated neutron stars
(e.g., RX J1856.5-3754, PSR 0205+6449) are now becoming available, and future
investigations at gravitational wave observatories focus on neutron stars as major
potential sources of gravitational waves (see [5] for a recent overview). Depending
on star mass and rotational frequency, the matter in the core regions of neutron stars
may be compressed to densities that are up to an order of magnitude greater than
the density of ordinary atomic nuclei. This extreme compression provides a high-
pressure environment in which numerous subatomic particle processes are likely to
compete with each other [6, 7]. The most spectacular ones stretch from the gen-
eration of hyperons and baryon resonances (Σ ,Λ ,Ξ ,∆ ), to quark (u, d, s) decon-
finement, to the formation of boson condensates (π−, K−, H-matter) [6–9, 11, 12]
(see Fig. 10.1). In the framework of the strange matter hypothesis [15–17], it has
also been suggested that 3-flavor strange quark matter – made of absolutely stable
u, d, and s quarks – may be more stable than ordinary atomic nuclei. In the latter
event, neutron stars should in fact be made of such matter rather than ordinary (con-
fined) hadronic matter [18–20]. Another striking implication of the strange matter
hypothesis is the possible existence of a new class of white-dwarfs-like strange stars
(strange dwarfs) [21]. The quark matter in neutron stars, strange stars, or strange
dwarfs ought to be in a color superconducting state [22–25]. This fascinating possi-
bility has renewed tremendous interest in the physics of neutron stars and the physics
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NS	  in	  Cas	  A	  SNR:	  Evidence	  for	  rapid	  cooling	  –	  
2.12	  x	  106	  K	  –	  2.04	  x	  106	  K	  in	  2000-‐2009	  (Heinke	  &	  Ho	  10)	  
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Te ’ Te0ðT=108 KÞ!K; (7)

where Te0 # 106 K and !# 0:5. The evolution of Te is
hence similar to that of T, and the internal cooling curves
of Fig. 2 map onto analogous models of Figs. 1, 3, and 4.
The scale Te0 and the exponent! in Eq. (7) both depend on
the chemical composition of the envelope. The presence of
light elements, e.g., H, He, C, and/or O, increases Te0 and
reduces! compared to the case of heavy elements, e.g., Fe,
depending on the total mass !Mlight of light elements [22].

Using Eq. (7), the slope s ¼ dlog10Te=dlog10t of the
transit cooling curve from Eq. (4) is

s ¼ !
dlog10T

dlog10t
¼ %!

6

ft=tC
1þ fðt% tCÞ=tC

; (8)

whereas the slopes of the asymptotic trajectories, Eqs. (2)
and (6), are both s ¼ %!=6#%1=12. As long as t is only
slightly larger than tC, the transit slope is larger than those
of the asymptotic trajectories by a factor#f. The observed
slope over a 10 yr interval is sobs ’ %1:4. Note, however,
that the model ‘‘0.5’’ of Fig. 1 does not exhibit such a large
slope. We are thus led to investigate the origin of the
rapidity of Cas A’s cooling.

Several factors influence the rapidity of the transit phase.
First, LPBF depends on the shape of the Tcnð"Þ curve. A
weak " dependence, i.e., a wide Tcnð"Þ curve, results in a
thicker PBF neutrino emitting shell and a larger LPBF than a
strong " dependence. Second, the T dependence of Te, i.e.,
the parameter ! in Eq. (7), also affects the slope in Eq. (8).
Third, protons in the core will likely exhibit superconduc-
tivity in the 1S0 channel. Most calculations of the proton
critical temperature, Tcpð"Þ, are larger than Tcnð"Þ at low

densities. Proton superconductivity suppresses the MU
process in a large volume of the core at a very early age,
reducing LMU [23]. In our analytical model, this reduction
translates to a lower L9 and, hence, to a larger f. The
analytical model as well as our calculations reveal that
proton superconductivity significantly accelerates cooling
during transit and results in a large slope. This feature,
essential to account for Cas A’s cooling rate, is illustrated
in the right panel of Fig. 2.
By varying the relevant physical ingredients, such as the

density range of proton 1S0 superconductivity, the shape of
the Tcnð"Þ curve, the chemical composition of the enve-
lope, and the star’s mass, many models can reproduce the
average observed Te of Cas A. These models yield slopes
ranging from #% 0:1 (no rapid cooling and no constraint
on TC) up to %2. A typical good fit to the rapid cooling
of Cas A is shown in Fig. 3, where the large slope results
from the strong suppression of LMU by extensive proton
superconductivity. Figure 4 demonstrates that the result
TC ’ 0:5' 109 K does not depend on the star’s mass,
but that the slope during the transit is very sensitive to
the extent of proton superconductivity. Models successful
in reproducing the observed slope require superconducting
protons in the entire core. Although spectral fits [5] seem
to indicate that Cas A has a larger than canonical mass
(1:4M(), a recent analysis [6] indicates compatibility, to
within 3#, with a smaller mass, 1:25M(. The need for
extensive proton superconductivity to reproduce the large
observed slope favors moderate masses unless supercon-
ductivity extends to much higher densities than current
models predict (see, e.g., Fig 9 in [14] for a large sample
of current models).
The inferred TC ’ 0:5' 109 K, either from Figs. 1, 3,

and 4 or from Eq. (3), appears quite robust and stems from
the small exponent in the relation TC / ðC9L

%1
9 t%1

C Þ1=6.
Assuming L9 is not very strongly affected by protonCT  = 10  K

T  = 0CCT  = 5.5x10  K8

9

FIG. 3. A typical good fit to Cas A’s rapid cooling for a 1:4M(
star, built from the EOS of APR [25] with an envelope mass
!Mlight ¼ 5' 10%13M(. The two dotted curves, with indicated

values of TC, are to guide the eye. The three models have a
proton 1S0 gap from [26] (the model ‘‘CCDK’’ in [14]) which
results in the entire core being superconducting. The insert
shows a comparison of our results with the five data points of
[7] along with their 1# errors.

0.51
0.52
0.57

1.9
1.6
1.3

M/M T  [10  K]C
9

FIG. 4. Cooling curves with different masses and values of
TC as indicated. For the 1:9M( star, !Mlight ¼ 5' 10%11M(.
For the other two masses shown, !Mlight ¼ 5' 10%13M(. The
assumed proton 1S0 gap is the same as in Fig. 3. The slopes, at
the current age of Cas A, are %1:4, %0:9, and %0:5 for the 1.3,
1.6, and 1:9M( models, respectively: the decrease, with increas-
ing mass, directly reflects the decrease of the core’s fractional
volumes in which protons are superconducting.

PRL 106, 081101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 FEBRUARY 2011
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Transi2on	  to	  neutron	  superfluidity:	  
Increased	  cooling	  <-‐	  evidence	  for	  this	  in	  Cas	  A	  NS	  observa2ons!	  
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Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)

x
# u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p" + · · · , 5.

where p" is the lepton pressure. In the vicinity of u # 1, with x % 1, p" is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State
Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.
This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The
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Knowing	  masses	  and	  radii	  would	  really	  help!!!	  
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represents the minimum radius possible for a given mass, given the contour’s value of Mmax. For
example, if M max ! 2 M !, a 1.4-M ! neutron or quark star necessarily has R ! 8.25 km. It also
follows that any M−R curve passing through a given (M, R) point has a smaller value of Mmax than
that of the maximally compact EOS passing through the same (M, R) point. This hypothesis can
be easily demonstrated by overlaying M−R trajectories for an alternate EOS, such as the MIT
bag-like model, p = (ε − ε0)/3 (Figure 3). For the indicated point (1.4 M !, 10 km), this alternate
EOS has a maximum mass of only 1.79 M !, whereas the maximum mass of the maximally compact
EOS is 2.69 M !.

3. NEUTRON STAR MASSES

3.1. Mass Measurements

The most accurate measurements concerning neutron stars are mass determinations from pul-
sar timing. To date, approximately 33 relatively precise masses have become available. In these
systems, five Keplerian parameters can be precisely measured (23); these parameters include the
binary period P, the projection of the pulsar’s semimajor axis on the line of sight a p sin i (where i
is the orbit’s inclination angle), the eccentricity e, and the time T0 and longitude ω of periastron.
Two of these observables yield a mass function,

f p =
(

2π

P

)2 (
a p sin i

)3

G
= (M c sin i )3

M 2 , 12.

where M = M p + M c is the total mass, Mp is the pulsar mass, and Mc is the companion mass.
The minimum possible companion mass Mc is equal to fp.

The inclination angle i is often the most difficult parameter to infer, but even if it were known
a priori, the above equation would specify a relation between only Mp and Mc, unless the mass
function fc of the companion were also measurable. The mass function of the companion is mea-
surable in the rare case when the companion itself is a detectable pulsar or a star with an observable
spectrum, as in an X-ray binary. Fortunately, binary pulsars are compact systems, and general rel-
ativistic effects can often be observed. These effects include the advance of the periastron of the
orbit,

ω̇ = 3
(

2π

P

)5/3 (
GM

c 3

)2/3

(1 − e2)−1; 13.

the combined effect of variations in the transverse Doppler shift and gravitational redshift (time
dilation) around an elliptical orbit,

γ = e
(

P
2π

)1/3 M c (M + M c )
M 4/3

(
G
c 3

)2/3

; 14.

the orbital period decay due to the emission of gravitational radiation,

Ṗ = −192π

5

(
2πG

c 3

)5/3 (
1 + 73

24
e2 + 37

96
e4

)
(1 − e2)−7/2 M p M c

M 1/3 ; 15.

and the Shapiro time delay (24), caused by the propagation of the pulsar signal through the
gravitational field of its companion. The relativistic Shapiro delay produces a delay in pulse arrival
time (25),

δS(φ) = 2
GM c

c 3 ln
[

1 + e cos φ

1 − sin(ω + φ) sin i

]
, 16.
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Pulsar	  with	  binary	  companion:	  
Mass	  func1on	  for	  pulsar	   Companion	  mass	  

Total	  system	  mass	  

Orbital	  inclina1on	  

•  Must	  know/infer	  companion	  mass	  and	  inclina2on	  to	  get	  MP.	  

•  Different	  kinds	  of	  binaries:	  	  
X-‐ray	  binaries	  (accre1ng	  NSs),	  double	  NS	  binaries,	  
NS–normal-‐star	  binaries,	  NS–WD	  binaries.	  

•  Companion	  mass:	  via	  stellar	  models	  or	  rela1vis1c	  effects.	  

•  Inclina1on:	  most	  difficult.	  In	  rela1vis1c	  binaries:	  	  
Shapiro	  2me	  delay	  (delay	  of	  pulsar	  pulses	  by	  gravity	  of	  
companion)	  

NASA	  
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X-ray/optical
binaries

Double–
neutron star
binaries

White dwarf–
neutron star
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Main sequence–
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2.95 ms pulsar
In 47 Tuc

In NGC 1851
In M5

In NGC 6440
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4U1700-37 (32)
Vela X-1 (33)
Cyg X-2 (34)
4U 1538-52 (33)
SMC X-1 (33)
LMC X-4 (33)
Cen X-3 (33)
Her X-1 (33)
XTE J2123-058 (35)
2S 0921-630 (36)
4U 1822-371 (37)
EXO 1722-363 (38)
B1957+20 (39)
IGR J18027-2016 (40) 
J1829+2456 (42)
J1829+2456 comp. (42)
J1811-1736 (43)
J1811-1736 comp. (43)
J1906+0746 (44)
J1906+0746 comp. (44)
J1518+4904 (27)
J1518+4904 comp. (27)
B1534+12 (45)
B1534+12 comp. (45)
B1913+16 (46)
B1913+16 comp. (46)
B2127+11C (47)
B2127+11C comp. (47)
J0737-3039A (48)
J0737-3039B (48)
J1756-2251 (49)
J1756-2251 comp. (49)
J1807-2500B (29)
J1807-2500B comp. ? (29)
B2303+46 (31)
J1012+5307 (50)
J1713+0747 (51)
B1802-07 (31)
B1855+09 (52)
J0621+1002 (53)
J0751+1807 (53)
J0437-4715 (54)
J1141-6545 (55)
J1748-2446I (56)
J1748-2446J (56)
J1909-3744 (57)
J0024-7204H (56)
B1802-2124 (58)
J051-4002A (56)
B1516+02B (59)
J1748-2021B (60)
J1750-37A (60)
J1738+0333 (61)
B1911-5958A (62)
J1614-2230 (63)
J2043+1711 (64)
J1910+1256 (28)
J2106+1948 (28)
J1853+1303 (28)
J1045-4509 (31)
J1804-2718 (31)
J2019+2425 (65)
J0045-7319 (31)
J1903+0327 (66)
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Neutron star mass (M◉)

Figure 7
Measured neutron star masses with 1-σ errors. References in parentheses following source names are identified in Table 1.
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Lasmer	  12,	  
ARNPS	  

NS+NS	  

WD+NS	  

NS	  +	  normal	  star	  

X-‐ray	  binaries	  

PSR	  J0348+0432	  
2.01+-‐0.04	  M☉	  
	  
	  

Most	  massive:	  
PSR	  J1614-‐2230	  
1.97+-‐0.04	  M☉	  
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Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)

x
# u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p" + · · · , 5.

where p" is the lepton pressure. In the vicinity of u # 1, with x % 1, p" is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State
Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.
This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The
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proto–neutron stars have a minimum gravitational mass of order 0.9–1.2 M !, depending on
the entropy profile within the star (73). Masses at the higher end of this range are suggested
for configurations with strongly shocked outer cores. Masses smaller than the minimum are
dynamically unstable and cannot lead to stable neutron stars.

In summary, the current gravitational-collapse paradigm for cores of massive stars that lead to
hot, lepton-rich proto–neutron stars and successful supernova explosions imposes a lower limit on
neutron star masses at birth. Neutron star masses can increase due to fallback after the explosion and
accretion from binary companions, but they cannot further decrease except during a catastrophic
merger. Given the observational errors, the lowest observed masses are not currently incompatible
with this paradigm, but this remains an interesting problem.

3.4. The Distribution of Neutron Star Masses
Most neutron stars have masses close to 1.3 to 1.4 M !, but lower and higher masses exist. Evo-
lution probably plays many roles in the distribution of neutron star masses: To name only two
considerations, the neutron star birth mass seems to depend on progenitor mass, and accretion can
lead to the accumulation of several tenths of a solar mass over a star’s life. The observed masses
(Table 1) may be separated into four groups that could have different evolutionary histories:
X-ray binaries, double–neutron star binaries, WD–neutron star binaries, and WD–neutron star
binaries found in globular clusters. Figure 8 shows histograms of masses for these four groups,

Mass (M◉)

N
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N
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X-ray binaries Double–neutron
star binaries

White dwarf–
neutron star

binaries

White dwarf–
neutron star
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Figure 8
Histograms of neutron star masses for four groups: X-ray binaries, double–neutron star binaries, white
dwarf–pulsar binaries, and white dwarf–pulsar binaries in globular clusters (GCs). Bins are taken to be
0.08333 M ! in width.
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Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)

x
# u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p" + · · · , 5.

where p" is the lepton pressure. In the vicinity of u # 1, with x % 1, p" is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State
Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.
This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The
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peak represents neutron star production through conventional iron core collapse. The existence
of two types of supernovae—iron core-collapse supernovae from high-mass progenitors and
electron-capture supernovae from low-mass O-Ne-Mg cores—is supported by statistics of
neutron star–hosting X-ray binaries. Knigge et al. (76) show that these binaries are composed
of two subpopulations differentiated by spin periods, orbital periods, and orbital eccentricities.
Those with short spin and orbital periods and low eccentricities probably originate from
O-Ne-Mg accretion–induced collapses.

The study by Podsiadlowski et al. (77) demonstrates that the pulsar and companion stars
in double–neutron star binaries appear to be drawn from the same distribution. Their small
dispersions could be attributed to their birth in O-Ne-Mg supernovae, whose helium (He) cores
are expected to have a small mass range (1.36–1.38 M !) prior to collapse. Özel et al.’s study also
indicates that although the mean mass of the lowest group of WD–neutron star binaries is nearly
the same as that of the double–neutron star binaries, the dispersion of the former appears greater.
How significant this finding is, however, depends on the details of fitting the optical light curves
in these systems.

In contrast, Kiziltan et al. (56) claimed that there is significant evidence for only two groups
centered at 1.35 M ! and 1.5 M !. Presumably only the higher-mass group has experienced con-
siderable accretion.

4. SIMULTANEOUS MASS AND RADIUS MEASUREMENTS
In contrast to mass determinations, there are no high-accuracy radius measurements. Moreover,
there are no radius measurements for any neutron star with a precise mass determination. Many
astrophysical observations that could lead to the extraction of neutron star radii, or combined mass
and radius constraints, have been proposed. These observations include the following.

1. Thermal X-ray and optical fluxes from isolated and quiescent neutron stars (78).
2. Type I X-ray bursts on neutron star surfaces (79).
3. Quasi-periodic oscillations from accreting neutron stars (80).
4. Spin-orbit coupling, observable through pulsar timing in extremely compact binaries, lead-

ing to moments of inertia (81).
5. Pulsar glitches, which constrain properties of neutron star crusts (82).
6. Cooling following accretion episodes in quiescent neutron stars that also constrain crusts

(83).
7. Neutron star seismology from X-rays observed from flares from soft γ -ray repeaters (84).
8. Pulse profiles in X-ray pulsars, which constrain M/R ratios due to gravitational light bending

(85).
9. Gravitational radiation from tidal disruption of merging neutron stars (7).

10. Neutrino signals from proto–neutron stars formed in Galactic supernovae (72).

Of these proposed observations, thermal emission and X-ray bursts from neutron star surfaces
have dominated recent attempts to infer neutron star radii.

4.1. Thermal Emission from Quiescent and Isolated Sources
Until a million years after a star’s birth, neutrino emission dominates thermal emission from
the surface, but the star is observable as an X-ray source (and, if it is near enough, as an optical
source). Several thermally emitting neutron stars have been observed, some from nearby isolated
sources and others from binaries in globular clusters. To a zeroth approximation, thermal emission
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•  So	  far	  no	  robust	  NS	  radius	  (or	  mass&radius)	  measurements.	  

•  Approaches:	  (from	  La�mer	  12)	  

Alan	  Weinstein’s	  
talk!	  

1dal	  deforma1on	  &	  	  
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NASA	  

•  Unstable	  He	  emission	  on	  NS	  surface.	  

•  Rapidly	  rising	  X-‐ray	  burst	  (~1s),	  slow	  decay	  (~100s).	  

•  Photosphere	  expansion:	  	  
Radia1on	  pressure	  pushes	  NS	  atmosphere	  
(=photosphere),	  balances	  gravity.	  

•  Observa1on	  +	  atmosphere	  models	  +	  distance	  
-‐>	  radius	  and	  mass	  (but	  model	  dependent)	  

Quiescent	  NSs	  

(see	  La�mer	  12	  for	  review)	  

•  (Almost)	  Black-‐body	  UV/X-‐ray	  emission	  of	  young	  neutron	  stars.	  

•  Depends	  on	  NS	  atmosphere	  composi1on,	  magne1c	  field,	  	  
galac1c	  UV/X-‐ray	  absorp1on.	  Need	  to	  know	  distance.	  

•  Fits	  based	  on	  atmosphere	  models	  give	  radius	  and	  mass	  es1mates.	  	   XMM/Newton	  
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Figure 11
(a) Probability distributions for pressure as a function of energy density using the M−R probability distributions from Figure 10.
(b) Probability distributions for the M−R curve. The diagonal dashed line is the causality limit, and the dotted curve is the 716-Hz
rotation constraint. 1-σ and 2-σ contours are shown as dashed and solid lines, respectively. Also shown is the estimated mass and radius
error region, including only distance errors, for RX J1856-3754 (92). Figure adapted from Reference 100.

expansion bursts are modeled. On the one hand, if one assumes Rph = R, the predicted radii from
burst sources would become ∼2 km smaller (99); however, in this case, the Mmax constraint from
PSR J1614-2230 can barely be satisfied (100). On the other hand, if the burst data are excluded, the
inferred M−R relation is essentially unaltered from the baseline results achieved by incorporating
the burst sources with the possibility that Rph ≥ R (A.W. Steiner, private communication). In this
case, the observed M−R results are largely a consequence of the wide range of observed R∞ values
of the quiescent globular cluster sources (Figure 10), which forces the M−R trajectory to enter
its vertical trajectory at relatively small radii (∼12 km). Otherwise, the existence of both small and
large observed values of R∞ would not be compatible with realistic masses.

M−R information has also been inferred from pulse-shape modeling of X-ray bursts. Although
predictions from observations of individual sources have large errors, Leahy et al. (105) conclude
that only an M−R curve with a constant radius of 12 km for 1 M % < M < 2.3M % would be
consistent with observations of all sources studied, namely XTE J1807-294, SAX J1808-3658, and
XTE J1814-334. Such a result is remarkably similar to the conclusions drawn in Reference 100
(Figure 11).

Nevertheless, Suleimanov et al.’s (101) study of longer X-ray bursts implies considerably
larger radii: R ! 14 km. Those results are further supported by spin-phase-resolved spectroscopy
of isolated neutron stars (106) that yield small neutron star redshifts: z & 0.16. This value for z,
coupled with M > 1.2 M %, implies that R > 14 km. Because these results are also incompatible
with available experimental information discussed in the next section, it is important to resolve
these differences. More sophisticated modeling of photospheric radius expansion bursts and
neutron star atmospheres, together with refinements of distances, will be required for additional
progress.
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Sta1s1cal	  Analysis	  of	  observa1onal	  data:	  Steiner+10,+12,	  La�mer	  12	  
Warning:	  Does	  not	  fix	  model	  dependence	  of	  M,	  R	  es1mates!	  
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(a) Probability distributions for pressure as a function of energy density using the M−R probability distributions from Figure 10.
(b) Probability distributions for the M−R curve. The diagonal dashed line is the causality limit, and the dotted curve is the 716-Hz
rotation constraint. 1-σ and 2-σ contours are shown as dashed and solid lines, respectively. Also shown is the estimated mass and radius
error region, including only distance errors, for RX J1856-3754 (92). Figure adapted from Reference 100.

expansion bursts are modeled. On the one hand, if one assumes Rph = R, the predicted radii from
burst sources would become ∼2 km smaller (99); however, in this case, the Mmax constraint from
PSR J1614-2230 can barely be satisfied (100). On the other hand, if the burst data are excluded, the
inferred M−R relation is essentially unaltered from the baseline results achieved by incorporating
the burst sources with the possibility that Rph ≥ R (A.W. Steiner, private communication). In this
case, the observed M−R results are largely a consequence of the wide range of observed R∞ values
of the quiescent globular cluster sources (Figure 10), which forces the M−R trajectory to enter
its vertical trajectory at relatively small radii (∼12 km). Otherwise, the existence of both small and
large observed values of R∞ would not be compatible with realistic masses.

M−R information has also been inferred from pulse-shape modeling of X-ray bursts. Although
predictions from observations of individual sources have large errors, Leahy et al. (105) conclude
that only an M−R curve with a constant radius of 12 km for 1 M % < M < 2.3M % would be
consistent with observations of all sources studied, namely XTE J1807-294, SAX J1808-3658, and
XTE J1814-334. Such a result is remarkably similar to the conclusions drawn in Reference 100
(Figure 11).

Nevertheless, Suleimanov et al.’s (101) study of longer X-ray bursts implies considerably
larger radii: R ! 14 km. Those results are further supported by spin-phase-resolved spectroscopy
of isolated neutron stars (106) that yield small neutron star redshifts: z & 0.16. This value for z,
coupled with M > 1.2 M %, implies that R > 14 km. Because these results are also incompatible
with available experimental information discussed in the next section, it is important to resolve
these differences. More sophisticated modeling of photospheric radius expansion bursts and
neutron star atmospheres, together with refinements of distances, will be required for additional
progress.
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Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)

x
# u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p" + · · · , 5.

where p" is the lepton pressure. In the vicinity of u # 1, with x % 1, p" is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State
Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.
This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The

490 Lattimer
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Summary	  &	  Conclusions	  of	  Lecture	  II	  
•  Basics	  of	  core-‐collapse	  supernova	  theory	  	  
on	  solid	  founda1on;	  details	  to	  be	  worked	  out.	  

• Mul1-‐dimensional	  neutrino	  mechanism	  	  
best	  bet	  for	  blowing	  up	  ordinary	  massive	  stars.	  	  
Next:	  complete	  3D	  models.	  

•  Increasingly	  beier	  constraints	  on	  the	  nuclear	  EOS	  
via	  NS	  mass	  and	  radius	  constraints.	  
Also:	  laboratory	  constraints	  &	  beier	  theory.	  

•  The	  next	  galac2c	  core-‐collapse	  supernova	  
has	  already	  exploded.	  	  
(But	  its	  GWs/neutrinos/EM	  waves	  beier	  
	  not	  get	  here	  un1l	  2015+.)	  

• Neutrinos	  and	  GWs	  probe	  supernova	  dynamics	  
and	  thermodynamics	  -‐>	  nuclear/neutrino	  physics.	  
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Since we do not currently consider energy (or species) coupling
for thermal emission processes such as electron–positron annihi-
lation to a neutrino–antineutrino pair, we compute an emissivity
based on the thermal content of the matter ignoring any final
state neutrino blocking. To limit the neutrino energy density
to the equilibrium value (where neutrino–antineutrino annihila-
tion rates are in equilibrium with the thermal pair production
rates), we use Kirchhoff’s law to derive an effective absorption
opacity for neutrino–antineutrino annihilation from the thermal
emissivity,

κeff,thermal
a,(ν) = ηthermal

(ν) /B(ν), (12)

where B(ν) = cE3
(ν)/(2πh̄c)3f

eq
(ν) is the thermal energy density of

neutrinos with energy E(ν) and f
eq
(ν) = 1/(exp [(E(ν) − µ)/T ]+1)

is the equilibrium neutrino distribution function with chemical
potential µ. As we shall see, this method performs well
at predicting the thermal neutrino flux of the heavy-lepton
neutrinos during the pre-explosion phase.

In nuGR1D, we first update the hydrodynamic variables to
the n + 1th timestep. We then compute the neutrino opacities
and emissivities associated with the updated hydrodynamic
variables. We update the radiation field operator split. The flux
term is solved explicitly, using the radiation moments of the nth
timestep. We calculate the neutrino–matter interaction terms
using the n + 1 radiation moments via a local implicit update.
With the n + 1 radiation energy density source term, we then
update the energy density and electron fraction of the matter.
We use 24 energy groups, with lowest-energy group centers at
0.5 MeV and 1.5 MeV, and then spaced logarithmically up to
200 MeV for νe, ν̄e, and νx . We note that for the highest energy
bins it occasionally occurs that the evolved neutrino flux vector
exceeds the evolved neutrino energy density. This tends to occur
in the most dynamic phases of our simulations and where the
opacities vary significantly from one zone to the next. When
this is the case we limit the neutrino flux to the neutrino energy
density. We extract the radiation quantities in the coordinate
frame at a radius of 500 km.

3. INITIAL MODELS AND EQUATIONS OF STATE

We employ the most recent non-rotating solar-metallicity
single-star model set from the stellar evolution code KEPLER
(Woosley & Heger 2007). This model set contains the pre-
supernova configuration of 32 stars ranging in ZAMS mass
from 12 M" to 120 M". We denote individual models by
sXXWH07, where XX corresponds to the integer ZAMS mass
of the model, e.g., s12WH07 is the 12 M" model of this model
set. In O’Connor & Ott (2011), we investigated this and other
model sets in the context of black hole formation. Under the as-
sumption of a failed core-collapse supernova, we found a strong
empirical relation between the properties of the presupernova
structure and the evolution of the failing supernova, e.g., the
time to black hole formation. This led to a clear prediction: if
we observe black hole formation in a failed core-collapse su-
pernova via neutrinos, the lifetime of the protoneutron star (and
thus of the neutrino signal) relays direct information about the
presupernova structure. However, such a prediction (1) requires
a failed supernova, which may not be the norm, and (2) has a
strong dependence on the nuclear EOS. The empirical param-
eter introduced in O’Connor & Ott (2011) is the compactness
of the progenitor, measured at the time of core bounce. It is an
inverse measure of the radial extent of a given mass coordinate

20 30 40 50 60 70 80 100 1201512 25
MZAMS [M ]

0

0.2

0.4

0.6

0.8

1

1.2

1.4
ξ M

ξ1.75

ξ2.5

Figure 1. Compactness parameters for the 32 considered presupernova models
of Woosley & Heger (2007) vs. ZAMS mass as evaluated from collapse
simulations with the LS220 EOS. We show both ξ1.75 and ξ2.5. The mapping
between ZAMS mass and precollapse structure is highly non-monotonic,
making the former an ill-suited parameter for describing progenitor structure in
core collapse simulations.
(A color version of this figure is available in the online journal.)

at the time of bounce,

ξM = M/M"

R(Mbary = M)/1000 km

∣∣∣
t=tbounce

, (13)

where R(Mbary = M) is the radial coordinate that encloses a
baryonic mass of M at the time of core bounce. In O’Connor
& Ott (2011), we chose M = 2.5 M", since this is the relevant
mass scale for black hole formation, i.e., a typical maximum
baryonic mass at which a range of EOS can no longer support
a neutron star against gravity. In this study, we primarily use
ξ1.75. The motivation for this is that during the postbounce pre-
explosion phase, the relevant mass scale, especially for models
with relatively small compactness, is much less than 2.5 M".
In this study, we choose 1.75 M" because this is close to
the average baryonic mass inside the shock at 200–300 ms
after bounce for all models: in the two extreme models that
span the space in compactness parameter (model s12WH07,
[ξ1.75 = 0.24 and ξ2.5 = 0.022], on the lower end; model
s40WH07 [ξ1.75 = 1.33 and ξ2.5 = 0.59] on the upper end),
the baryonic mass accreted through the shock at 250 ms after
bounce is 1.45 M and 2.05 M, respectively. We further justify our
motivation of using ξ1.75 over ξ2.5 in Section 5.1. In Figure 1, we
plot both ξ1.75 and ξ2.5 versus ZAMS mass for all 32 considered
models. ξ1.75 is provided in Table 1 for all models.

For Figure 1, one notes that while ξ1.75 and ξ2.5 differ quan-
titatively, there is no significant qualitative difference between
them. The overall trends transcending individual models remain,
including the two regions of high compactness near 22–25 M"
and 35–45 M". ξ1.75 simply provides a more fine-grained pa-
rameterization at the lower mass scale relevant in the first few
hundred milliseconds after bounce. Note, however, that there
are a few models that have similar ξ2.5, but rather different den-
sity structure at small enclosed masses and radii and, hence, a
different ξ1.75. Models s14WH07 and s16WH07 are examples.

In this study, we perform core collapse simulations with
each progenitor and two EOS. We use the EOS of Lattimer

5

O’Connor	  &	  Oi	  2013	  
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supernova may be higher than this fiducial number. More im-
portantly, the rate of interactions in the pre-explosion phase will
give us detailed information on the progenitor core structure.

In order to more directly quantify the differences between
variations in progenitor compactness and variations in the
nuclear EOS, we plot in the inset of Figure 5 the number of
expected IBD detected interactions in a Super-Kamiokande-
like water Cherenkov detector at various postbounce times
versus ξ1.75. There is a well-defined trend: the number of IBD
interactions detected in the first 100, 200, 300, and 400 ms
increases with the compactness parameter of the models. For
reference, we include the expected number of interactions at
200 and 400 ms for both EOS in Table 1. We find that the EOS
dependence of the expected number of interactions is similar to
the EOS dependence of the total emitted ν̄e energy: the HShen
EOS leads to a lower number of interactions (compare the inset
of Figure 5 to the center panel of Figure 4). The dependence
on EOS is somewhat stronger here, since the lower average
ν̄e energy predicted from stiffer EOS translates into a reduced
cross section in Earth-based detectors. In addition to the total
number of interactions, a water Cherenkov detector measures
individual energies, and thus, allows for the reconstruction of
the cumulative emitted ν̄e energy over time. This reconstruction
will depend on the detector’s response function and efficiency.

An additional independent path to experimentally probing
the inner structure of the progenitor is via the total neutrino
energy emitted in all species over the first 10s of seconds after
the initial collapse. This method requires a measurement of
the total fluence of neutrinos of all species, not just electron
antineutrinos. Examples of neutrino interactions capable of
relaying such information are the mono-energetic de-excitation
of a neutral-current neutrino excitation of 12C (Scholberg 2012)
or neutrino-proton elastic scattering interactions (Dasgupta &
Beacom 2011). Such measurements would require good energy
resolution, a significant source of carbon and/or a low energy
threshold, for example, a liquid scintillator neutrino detector. We
note that even with a liquid scintillator detector, the dominant
neutrino interaction is still IBD (Scholberg 2012).

If such a measurement was made, and there is not a sig-
nificant amount of rotation (see the discussion on rotation in
Section 5.3), one can immediately infer the gravitational bind-
ing energy of the remnant, since neutrinos carry away the vast
majority (∼99%8) of the gravitational binding energy. For typ-
ical nuclear EOS like the ones considered here, this results in a
one-to-one mapping of the released gravitational binding energy
to the baryonic mass of the remnant, and, hence, the gravitational
mass of the remnant. This is most easily seen by fitting the grav-
itational binding energy of a cold (T = 0.1 MeV), neutrino-less
β-equilibrium, non-rotating neutron star to its baryonic mass.
From cold neutron star TOV solutions using the LS220 EOS one
can obtain an empirical fit to better than 3% above a baryonic
mass of 1.15 M",

Ebinding ∼ 1.12 × 1053(Mbary/M")2 erg. (14)

A similar fit for the HShen EOS gives

Ebinding ∼ 9.78 × 1052(Mbary/M")2 erg, (15)

and is accurate to 5% above baryonic masses of 1.15 M".
Below Mbary = 1.15 M", the empirical quadratic fit is not as

8 The remaining ∼1% of the energy is predominantly shared among the
kinetic energy of the explosion, the original binding energy of the unbound
stellar mantle, and the binding energy of the iron core at the onset of collapse.
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Figure 6. Total emitted neutrino energy estimated from the enclosed baryonic
mass as a function of explosion time for the LS220 EOS. A measurement of the
total emitted neutrino energy and an estimate of the explosion time constrains
progenitor structure. For reference, we provide the cold neutron star gravitational
mass associated with the released binding energy on the right ordinate. This
figure is constructed using a fit of the gravitational binding energy of a cold
neutron star to its baryonic mass, Etotal

ν ∼ 1.12 × 1053(Mbary/M")2 erg, and
the baryonic mass enclosed in the shock at any given time. This defines the
explosion time to be, in a Lagrangian sense, the time at which the outermost
final neutron star mass element accretes through the shock. The color coding
corresponds to ξ1.75, and the color coding is provided in Figure 3.
(A color version of this figure is available in the online journal.)

accurate. However, all models considered here reach a baryonic
protoneutron star mass of 1.15 M" within ∼10 ms of bounce.
Hence, we believe that the above fits are acceptable for the
iron-core core collapse events considered here.

We now make the assumption that an explosion launched
at a particular postbounce time will result in a neutron star
remnant with a baryonic mass equal to the baryonic mass
that has accreted through the shock up until the time of the
explosion. This neglects any late-time fallback of material onto
the protoneutron star which would lead to additional neutrino
emission. Fryer (2009) and Ugliano et al. (2012) predict fallback
masses !5%–10% of the initial protoneutron star remnant
mass. We also neglect any asymmetric mass accretion that may
occur in the early explosion phase. In Figure 6, we convert
the baryonic mass enclosed by the shock to the total emitted
neutrino energy using Equations (14) and (15). We plot this for
all progenitor models (run with the LS220 EOS) as a function
of the hypothetical time of explosion. As a concrete example,
consider the situation where 300 B (shown as the dashed
line in Figure 6) of total neutrino energy was observational
inferred. This could correspond (1) to a progenitor with a high
compactness parameter that exploded at an early time, e.g.,
model s40WH07 at 70 ms or (2) to a low progenitor with
low compactness parameter that exploded at late times, e.g.,
model s12WH07 at 400 ms. If we have an estimate of the
explosion time, e.g., via characteristic features in the neutrino
observables, then we can use the combined measurement to
probe the progenitor core structure. This is further quantified in
Figure 7, where we choose three total emitted neutrino energies,
250, 300, and 350 B, and determine the time at which the
explosion must have been launched for a given compactness
and the respective total emitted energy. We plot this explosion
time versus ξ1.75 for all models and both EOS. In general, for
a fixed total emitted energy, as the compactness parameter of

11

O’Connor	  &	  Oi	  2013	  
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The	  General	  Picture	  

Black	  Hole	  Forma2on	  

When	  things	  go	  wrong...	  
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It’s	  not	  actually	  quite	  that	  simple...	  
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It’s	  not	  actually	  quite	  that	  simple...	  

Buccian2ni/	  
Metzger	  et	  al.	  	  

Woosley	  &	  
MacFadyen	  (accre1on	  disk)	  

(Unnova)	  
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It’s	  not	  actually	  quite	  that	  simple...	  

Buccian2ni/	  
Metzger	  et	  al.	  	  

Woosley	  &	  
MacFadyen	  (accre1on	  disk)	  

(Unnova)	  

(P	  ∼1	  ms)	  

(accre1on	  disk)	  

CCSN	  –	  long-‐GRB	  Rela2onship	  

• What	  is	  the	  long	  GRB	  central	  engine?	  	  
What	  decides	  which	  branch	  is	  taken?	  
-‐>	  currently	  not	  understood!	  
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Black	  Hole	  Forma1on	  

•  Black	  hole	  forma1on	  may	  happen	  in	  3	  ways:	  
– No	  explosion;	  proto-‐NS	  accretes	  more	  M	  than	  can	  be	  supported	  by	  EOS.	  
Maximum	  mass:	  controlled	  by	  EOS,	  temperature	  +	  rota1on.	  

– Successful	  explosion,	  but	  much	  fallback	  accre1on.	  

– Successful	  explosion,	  but	  hadron/quark	  phase	  transi1on	  during	  cooling.	  

•  First	  things	  first:	  	  
The	  is	  NO	  such	  thing	  as	  direct	  (“prompt”)	  collapse	  to	  a	  black	  hole	  in	  
ordinary	  massive	  stars	  (i.e.	  ZAMS	  mass	  10	  –	  130	  MSun)	  

A	  few	  more	  words	  on	  making	  BHs:	  
X =

1q
1� 2GM

r2
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GR	  Hydrodynamics	  

General	  Rela2vity:	  Why	  bother?	  

In	  Newtonian	  Gravity,	  	  
black	  holes	  cannot	  form.	  
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Nuclear	  Equa1on	  of	  State	  

Maximum	  Neutron	  Star	  Mass:	  Dependence	  on	  the	  Nuclear	  EOS	  

Figure	  by	  Evan	  O’Connor	  
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Dependence	  on	  the	  Nuclear	  Equa1on	  of	  State	  
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Black	  Hole	  Forma1on	  

What	  Stars	  make	  Black	  Holes?	  

Large	  uncertainty	  at	  solar	  metallicity:	  Physics	  of	  mass	  loss	  highly	  uncertain!	  

(O’Connor	  &	  Oi	  2011;	  see	  also	  Ugliano	  et	  al.	  2012)	  
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Electron	  Capture	  

Simplest	  case:	  Capture	  on	  free	  protons,	  neutrinos	  escape	  

capture	  if	  	  

At	  zero	  T,	  non-‐degenerate	  
nucleons:	  
	  
In	  core	  collapse:	  Capture	  typically	  at	  μe	  ∼	  >10	  MeV	  -‐>	  excess	  energy	  given	  to	  ν.	  	  
	  
Capture	  rates:	  (see,	  e.g.,	  	  Bethe	  et	  al.	  1979,	  Bethe	  1990,	  Burrows,	  Reddy	  &	  Thompson	  2006)	  

Complica1ons:	   •  Capture	  on	  nuclei	  more	  complicated;	  can	  be	  blocked	  
due	  to	  neutron	  shells	  filling	  up.	  
•  Pauli	  blocking	  of	  low-‐energy	  states,	  since	  neutrinos	  
don’t	  exactly	  leave	  immediately.	  	  



Nascent	  BH	  Spin	  and	  Mass	  Evolu2on	  	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  
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O6+	  2011,	  PRL	  

C.	  D.	  Oi	  @	  TAUP	  Summer	  School	  2013	  

Note:	  EOS	  unrealis1cally	  so�;	  	  
ruled	  out	  by	  2-‐MSun	  NS’	  Demorest+’10	  
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Stellar	  Collapse:	  Inner	  Core	  Mass	  

Why	  worry	  about	  Mic?	  

Mic	  

• Mic	  is	  the	  amount	  of	  maier	  	  
dynamically	  relevant	  in	  bounce.	  
• Mic	  sets	  kine1c	  energy	  	  
imparted	  to	  the	  shock.	  
• Mic	  (and	  IC	  radius)	  sets	  the	  	  
angular	  momentum	  that	  can	  be	  	  
dynamically	  relevant.	  
• Sets	  mass	  cut	  for	  material	  that	  	  
the	  shock	  needs	  to	  go	  through.	  
• Mic	  ∼0.5	  MSUN	  can	  easily	  stabilized	  by	  nuclear	  EOS.	  	  
-‐>	  No	  “prompt”	  Black	  Hole	  forma2on.	  	  
• Mic	  sets	  the	  mass	  that	  must	  be	  accreted	  (before	  explosion?)	  to	  make	  
a	  canonical	  1.4	  MSUN	  neutron	  star.	  

Bethe	  1990!!!	  
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Template	  


