Gravitational Waves (GW)

• Emission: Accelerated quadrupole bulk mass-energy motion.

Quadrupole approximation:

-> For astrophysical sources, must measure relative displacements of $< 10^{-22}$

1

Details: See

The Sound of Cosmic Explosions?

- Time-changing aspherical mass-energy flux -> Gravitational Waves
- Some back of the envelope physics:

We can estimate the frequency at which GWs are emitted!

Free fall time of a self-gravitating $\tau_{\rm ff} = \frac{1}{4} \sqrt{\frac{3\pi}{2G\bar{\rho}}} \approx 0.54 \frac{1}{\sqrt{G\bar{\rho}}} \quad f_{\rm GW} \approx 1/\tau_{\rm ff} \approx 2\sqrt{G\bar{\rho}}$ system

• Example: Volumetric mean density of the inner supernova core around bounce is 10¹³ g/cm³ -> f_{GW} will be of order 1000 Hz!

Gravitational-Waves from Core-Collapse Supernovae

Recent reviews: Ott '09, Kotake '11, Fryer & New '11

Need:

$$h_{jk}^{TT}(t,\vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t-\frac{|\vec{x}|}{c})\right]^{TT} \longrightarrow$$

accelerated aspherical (quadrupolar) mass-energy motions

Candidate Emission Processes:

- Convection and SASI
- Rotating collapse & bounce
- Rotational 3D instabilities
- Black hole formation

- Pulsations of the protoneutron star
- Anisotropic neutrino emission
- Aspherical accelerated outflows
- Magnetic stresses

GWs from Convection & SASI

Recent work: Kotake+ '09, '11, Murphy+'09, Yakunin+'10 E. Müller+'12, B.Müller+'13

- Prompt convection soon after bounce (Marek+ '09, Ott '09).
- Neutrino-driven convection & SASI (recent: Murphy+'09, Yakunin+10, Müller+12).
- Protoneutron star convection (e.g., Keil+ '96, Müller+'04)

Time-Frequency Analysis of GWs

Murphy, Ott, Burrows '09, see also B. Müller+'13

Can we observe GWs from Core-Collapse Supernovae?

GWs from Rotating Collapse & Bounce

Recent work: Dimmelmeier+ '08, Scheidegger+ '10, Ott+ '12, Kuroda+ '13

Rapid rotation:

Oblate deformation of the inner core

- Most extensively studied GW emission in core collapse
- Axisymmetric: ONLY h₊
- Simplest GW emission process: Rotation + Gravity + Stiffening of nuclear EOS.
- Strong signals for rapid rotation (-> millisecond proto-NS).

GWs from Rotating Collapse & Bounce

Recent work: Dimmelmeier+ '08, Scheidegger+ '10, Ott+ '12, Kuroda+ '13

Rapid rotation: Oblate deformation of the inner core 10^{14} $(g \text{ cm}^{-3})$ 10^{13} Infall 0max 10^{12} Plunge **Ring-Down** and 10^{11} Bounce 100Most extensively studied 50GW emission in core collapse $\begin{array}{c} 0 \\ -50 \\ -100 \end{array}$ Axisymmetric: ONLY h₊ Simplest GW emission process: **Rotation + Gravity +** Stiffening of nuclear EOS. -150 Strong signals for rapid rotation -200(-> millisecond proto-NS). -20 -15 10 15-10 5 20-5

 $t - t_{\text{bounce}}$ (ms)

Movie by Steve Drasco (Grinnell/Caltech)

Can we observe this?

Ott+ '12, PRD

Gravitational Waves

3+1 GR simulation, simplified microphysics u75 progenitor of Woosley+02

Ott+11

C. D. Ott @ TAUP Summer School 2013

Gravitational Waves from BH Formation

Neutron Stars & Constraints on the Nuclear Equation of State

http://www.clccharter.org/maya1/Supernova/Neutron-Artwork.jpg

C. D. Ott @ TAUP Summer School 2013

Evolution from Proto-NS to NS

- Cooling dominated by neutrinos for $\sim 10^5 10^6$ yrs. $p \rightarrow n + e^+ + \nu_e$
- Late time cooling: Sensitive to composition and superfluidity. (see Page+13 for detailed discussion)

Neutron Star Structure & Composition

Neutron Star Surface Temperatures

Page+13

Long-Term Neutron Star Cooling

NS in Cas A SNR: Evidence for rapid cooling – 2.12 x 10⁶ K – 2.04 x 10⁶ K in 2000-2009 (Heinke & Ho 10)

Long-Term Neutron Star Cooling

Page+11, PRL

Neutron Star Structure

C. D. Ott @ TAUP Summer School 2013

Neutron Star Structure & EOS Constraints

Neutron Star Masses

NASA

- Must know/infer **companion mass** and **inclination** to get M_P.
- Different kinds of binaries: X-ray binaries (accreting NSs), double NS binaries, NS–normal-star binaries, NS–WD binaries.
- Companion mass: via stellar models or relativistic effects.
- Inclination: most difficult. In relativistic binaries:
 Shapiro time delay (delay of pulsar pulses by gravity of companion)

Lattimer 12, ARNPS

X-ray binaries

NS+NS

Most massive: PSR J1614-2230 1.97+-0.04 M $_{\odot}$ PSR J0348+0432 $2.01 + -0.04 M_{\odot}$

White dwarfneutron star

WD+NS

Main sequenceneutron star

NS + normal star

Neutron Star Structure & EOS Constraints

Lattimer 2012

C. D. Ott @ TAUP Summer School 2013

Neutron Star Radii

- So far no robust NS radius (or mass&radius) measurements.
- Approaches: (from Lattimer 12)
- 1. Thermal X-ray and optical fluxes from isolated and quiescent neutron stars (78).
- 2. Type I X-ray bursts on neutron star surfaces (79).
- 3. Quasi-periodic oscillations from accreting neutron stars (80).
- 4. Spin-orbit coupling, observable through pulsar timing in extremely compact binaries, leading to moments of inertia (81).
- 5. Pulsar glitches, which constrain properties of neutron star crusts (82).
- Cooling following accretion episodes in quiescent neutron stars that also constrain crusts (83).
- 7. Neutron star seismology from X-rays observed from flares from soft γ -ray repeaters (84).
- 8. Pulse profiles in X-ray pulsars, which constrain *M/R* ratios due to gravitational light bending (85).
 Kidal deformation & Alan Weinstein's
- 9. Gravitational radiation from tidal disruption of merging neutron stars (7). talk!
- 10. Neutrino signals from proto-neutron stars formed in Galactic supernovae (72).

Type I X-Ray Bursts

(see Lattimer 12 for review)

- Unstable He emission on NS surface.
- Rapidly rising X-ray burst (~1s), slow decay (~100s).
- Photosphere expansion: Radiation pressure pushes NS atmosphere (=photosphere), balances gravity.
- Observation + atmosphere models + distance
 -> radius and mass (but model dependent)

Quiescent NSs

- (Almost) Black-body UV/X-ray emission of young neutron stars.
- Depends on NS atmosphere composition, magnetic field, galactic UV/X-ray absorption. Need to know distance.
- Fits based on atmosphere models give radius and mass estimates.

XMM/Newton

NASA

Neutron Star Masses & Radii

Statistical Analysis of observational data: Steiner+10,+12, Lattimer 12 Warning: Does not fix model dependence of M, R estimates!

Summary & Conclusions of Lecture II

- Basics of core-collapse supernova theory on solid foundation; details to be worked out.
- Multi-dimensional neutrino mechanism best bet for blowing up ordinary massive stars.
 Next: complete 3D models.
- Increasingly better constraints on the nuclear EOS via NS mass and radius constraints. Also: laboratory constraints & better theory.
- The next galactic core-collapse supernova has already exploded.
 (But its GWs/neutrinos/EM waves better not get here until 2015+.)
- Neutrinos and GWs probe supernova dynamics and thermodynamics -> nuclear/neutrino physics.

Bonus Slides

Compactness Parameter & Stellar Mass

O'Connor & Ott 2013

Remnant Mass from Neutrinos

O'Connor & Ott 2013

C. D. Ott @ TAUP Summer School 2013

When things go wrong...

Protoneutron Star, R ~30 km

Supernova Explosion

Black Hole Formation

It's not actually quite that simple...

~•*

It's not actually quite that simple...

A few more words on making BHs:

$$X = \frac{1}{\sqrt{1 - \frac{2GM}{r^2}}}$$

- First things first: The is NO such thing as direct ("prompt") collapse to a black hole in ordinary massive stars (i.e. ZAMS mass 10 – 130 M_{sun})
- Black hole formation may happen in 3 ways:
 - No explosion; proto-NS accretes more M than can be supported by EOS.
 Maximum mass: controlled by EOS, temperature + rotation.
 - Successful explosion, but much fallback accretion.
 - Successful explosion, but hadron/quark phase transition during cooling.

GR Hydrodynamics

C. D. Ott - The Physics of Stellar Collapse

Maximum Neutron Star Mass: Dependence on the Nuclear EOS

Dependence on the Nuclear Equation of State

What Stars make Black Holes?

(O'Connor & Ott 2011; see also Ugliano et al. 2012)

Outcome of Core Collapse (neglecting fallback, moderately-stiff EOS)

Large uncertainty at solar metallicity: Physics of mass loss highly uncertain!

Simplest case: Capture on free protons, neutrinos escape

$$e^- + p \xrightarrow{(W)} \nu_e + n \qquad \mu_{\nu_e} = 0$$

capture if $\mu_e > \mu_n - \mu_p$

At zero T, non-degenerate

nucleons: $\mu_e > 939.565 \,\mathrm{MeV} - 938.272 \,\mathrm{MeV} = 1.293 \,\mathrm{MeV}$

In core collapse: Capture typically at $\mu_e \sim >10$ MeV -> excess energy given to v.

Capture rates: (see, e.g., Bethe et al. 1979, Bethe 1990, Burrows, Reddy & Thompson 2006)

$$rac{\partial}{\partial t}Y_e \propto \mu_e^5 \propto
ho^{5/3}$$

Complications: • Capture on nuclei more complicated; can be blocked due to neutron shells filling up.

• Pauli blocking of low-energy states, since neutrinos don't exactly leave immediately.

Nascent BH Spin and Mass Evolution

Ott+ 2011, PRL

C. D. Ott @ TAUP Summer School 2013

Why worry about M_{ic}?

Bethe 1990!!!

- M_{ic} is the amount of matter dynamically relevant in bounce.
- M_{ic} sets kinetic energy imparted to the shock.
- M_{ic} (and IC radius) sets the angular momentum that can be dynamically relevant.
- Sets mass cut for material that the shock needs to go through.
- M_{ic} ~0.5 M_{SUN} can easily stabilized by nuclear EOS.
 -> No "prompt" Black Hole formation.
- M_{ic} sets the mass that must be accreted (before explosion?) to make a canonical 1.4 M_{SUN} neutron star.

Template