Concha Gonzalez-Garcia

GLOBAL ANALYSES OF OSCILLATION NEUTRINO EXPERIMENTS

Concha Gonzalez-Garcia (ICREA U. Barcelona & YITP Stony Brook) TAUP 2013, September 12th, 2013 GLOBAL ANALYSES OF OSCILLATION NEUTRINO EXPERIMENTS

Concha Gonzalez-Garcia (ICREA U. Barcelona & YITP Stony Brook)

OUTLINE

Determination of 3ν Lepton Flavour Parameters Light Sterile Neutrinos Matter Potential/Non-standard Neutrino Interactions

- By 2013 we have observed with high (or good) precision:
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS)
 - * Accelerator ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 250[700]$ Km (K2K,T2K, [MINOS])
 - * Some accel ν_{μ} appear as ν_{e} at $L \sim 250[700]$ Km (T2K (NEW 2013), [MINOS])
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya-Bay, Reno**) (NEW 2012)

- By 2013 we have observed with high (or good) precision:
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS)
 - * Accelerator ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 250[700]$ Km (K2K,T2K, [MINOS])
 - * Some accel ν_{μ} appear as ν_{e} at $L \sim 250[700]$ Km (**T2K (NEW 2013)**, [MINOS])
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya-Bay, Reno**) (NEW 2012)

• We have confirmed: Vacuum oscillation L/E pattern

MSW conversion in Sun

- By 2013 we have observed with high (or good) precision:
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS)
 - * Accelerator ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 250[700]$ Km (K2K,T2K, [MINOS])
 - * Some accel ν_{μ} appear as ν_{e} at $L \sim 250[700]$ Km (T2K (NEW 2013), [MINOS])
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya-Bay, Reno**) (NEW 2012)

All this implies that neutrinos are massive

and There is Physics Beyond SM

- By 2013 we have observed with high (or good) precision:
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS)
 - * Accelerator ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 250[700]$ Km (K2K,T2K, [MINOS])
 - * Some accel ν_{μ} appear as ν_{e} at $L \sim 250[700]$ Km (T2K (NEW 2013), [MINOS])
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya-Bay, Reno**) (NEW 2012)

All this implies that neutrinos are massive

and There is Physics Beyond SM

• The *important* question:

What is the BSM theory?

• The *difficult* path:

Detailed determination of the new low energy parametrization

The New Minimal Standard Model

• Minimal Extensions to give Mass to the Neutrino:

* Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$

* NOT impose *L* conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

The New Minimal Standard Model

• Minimal Extensions to give Mass to the Neutrino:

* Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$

* NOT impose *L* conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

 $\mathbf{3}\nu$ Flavour Parameters

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Two Possible Orderings

 3ν Flavour Parameters

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

• Two Possible Orderings

Accelerator LBL ν_e App (Minos, T2K)

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{b} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\rightarrow \theta_{13}$

 $\delta_{
m cp}$, $heta_{23}$

ExperimentDominant DependenceImportant DependenceSolar Experiments $\rightarrow \theta_{12}$ Δm_{21}^2 , θ_{13} Reactor LBL (KamLAND) $\rightarrow \Delta m_{21}^2$ θ_{12} , θ_{13} Reactor MBL (Daya-Bay, Reno, D-Chooz) $\rightarrow \theta_{13}$ Δm_{atm}^2 Atmospheric Experiments $\rightarrow \theta_{23}$ Δm_{atm}^2 , θ_{13} , δ_{cp} Accelerator LBL ν_{μ} Disapp (Minos) $\rightarrow \Delta m_{atm}^2$ θ_{23}

nzalez-Garcia

nzalez-Garcia

nzalez-Garcia

nzalez-Garcia

nzalez-Garcia

3 ν Analysis: "12" Sector

• $\Delta m_{13}^2 \gg E/L \Rightarrow P_{ee}^{3\nu} = c_{13}^4 P_{2\nu} + s_{13}^4$

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} = \begin{bmatrix} \underline{\Delta m_{21}^2} \\ \frac{\Delta m_{21}^2}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} \pm \sqrt{2}G_F N_e \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix}$$

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

3 ν Analysis: "12" Sector

• $\Delta m_{13}^2 \gg E/L \Rightarrow P_{ee}^{3\nu} = c_{13}^4 P_{2\nu} + s_{13}^4$

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} = \begin{bmatrix} \frac{\Delta m_{21}^2}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} \pm \sqrt{2}G_F N_e \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix}$$

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} & 2^{20} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) & 5^{-10} \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) & 5^{-10} \\ &$$

* Solar region determined by High E data

* Param's $\begin{cases} \theta_{12} \text{ SNO most sensitivity} \\ \Delta m_{21}^2 \text{ by KamLAND} \end{cases}$

* Tension in best fit between Solar and KamLAND $\Rightarrow \theta_{13}$ and ...?

3
$$\nu$$
 Analysis: "12" Sector and θ_{13}

• For $\theta_{13} = 0$

$$\sin^2 \theta_{12} = \begin{cases} 0.3 \text{ From Solar} \\ 0.325 \text{ From KLAND} \end{cases}$$

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} = 0$

• When θ_{13} increases

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

⇒ KamLAND region shifts left
⇒ Solar slight shifts right (due to High E)

$$\sin^2 \theta_{12} = \begin{cases} 0.3 \text{ From Solar} \\ 0.325 \text{ From KLAND} \end{cases}$$

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} \simeq 9^{\circ}$

• When θ_{13} increases

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

⇒ KamLAND region shifts left
⇒ Solar slight shifts right (due to High E)

3 ν **Analysis: "12" Sector and** θ_{13}

• For $\theta_{13} \simeq 9^{\circ}$

 $\Rightarrow \text{Good match of best fit } \theta_{12}$ $\Rightarrow \text{Residual tension on } \Delta m_{21}^2$ • When θ_{13} increases

$$P_{ee} \simeq \begin{cases} \text{Solar High E} : c_{13}^4 \sin^2 2\theta_{12} \\ \text{Solar Low E} : c_{13}^4 \left(1 - \sin^2 2\theta_{12}/2\right) \\ \text{Kam} : c_{13}^4 \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}\right) \end{cases}$$

⇒ KamLAND region shifts left
⇒ Solar slight shifts right (due to High E)

3 ν **Analysis: "12" Sector** Δm_{21}^2

• Residual tension on Δm_{21}^2 between Solar and KamLAND

3 ν Analysis: "12" Sector and the Solar Fluxes

Newer determination of abundance of heavy elements in solar surface give lower values
Solar Models with these lower metalicities fail in reproducing helioseismology data

– Two sets of SSM:

Starting from Bahcall etal 05, Serenelli etal 0909.2668

GS98 uses older metalicities

AGSXX uses newer metalicities

Flux cm ⁻² s ⁻¹	GS98	AGSS09
$pp/10^{10}$	$5.97~(1\pm 0.006)$	$6.03~(1\pm 0.005)$
$pep/10^{8}$	$1.41~(1\pm 0.011)$	$1.44~(1\pm 0.010)$
$hep/10^{3}$	$7.91(1 \pm 0.15)$	$8.18~(1\pm 0.15)$
$^{7}\text{Be}/10^{9}$	$5.08~(1\pm 0.06)$	$4.64~(1\pm 0.06)$
${}^{8}B/10^{6}$	$5.88~(1\pm 0.11)$	$4.85~(1\pm 0.12)$
13 N/10 ⁸	$2.82~(1\pm 0.14)$	$2.07(1^{+0.14}_{-0.13})$
$^{15}\text{O}/10^{8}$	$2.09\;(1^{+0.16}_{-0.15})$	$1.47 \ (1^{+0.16}_{-0.15})$
$^{17}F/10^{16}$	$5.65(1^{+0.17}_{-0.16})$	$3.48(1^{+0.17}_{-0.16})$

Talk by F. Villante

Fig. courtesy of Aldo Ianni

3 ν Analysis: "12" Sector and the Solar Fluxes

- Two sets of SSM:
 - **GS98** uses older metalicities
 - AGSXX uses newer metalicities

3 ν **Analysis: "12" Sector and the Solar Fluxes**

- Two sets of SSM:
 GS98 uses older metalicities
 AGSXX uses newer metalicities
- * What is the effect on the determination of oscillation parameters?
 Very small

Impact in Parameter Determination

z-Garcia

- Two sets of SSM:
 GS98 uses older metalicities
 AGSXX uses newer metalicities
- * What is the effect on the determination of oscillation parameters?
 Very small
- * Which SSM does the solar data favour? Both model statistically equally prob

3ν oscillation fit with solar fluxes free:

z-Garcia

(within luminosity constraint)

Comparison with Models

- Two sets of SSM:
 GS98 uses older metalicities
 AGSXX uses newer metalicities
- * What is the effect on the determination of oscillation parameters?
 Very small
- * Which SSM does the solar data favour? Both model statistically equally prob
 Some improvement if CNO determined: *Cleaner* Borexino Talk by F. Calaprice SNO+ Talk by J. Kaspar

3ν oscillation fit with solar fluxes free:

z-Garcia

(within luminosity constraint)

Comparison with Models

3 ν Analysis: "23" Sector ATM and LBL ν_{μ} Disapp

Dominant Oscillations ν_μ → ν_τ :

 *Δm²₃₁ is best determined
 by Minos-DIS ν_μ → ν_μ data
 * θ₂₃ best determined by SK
 * Minos-DIS favours non-maximal θ₂₃

Talk by P. Vahle

3 ν Analysis: "23" Sector ATM and LBL ν_{μ} Disapp

3 ν Analysis: "23" Sector ATM and LBL ν_{μ} Disapp

Dominant Oscillations: ν_μ → ν_τ: *Δm²₃₁ is best determined by Minos-DIS ν_μ → ν_μ data * θ₂₃ best determined by SK * Minos-DIS slight favour non-maximal θ₂₃
For θ₃₁ ≠ 0 *ATM sensitivity to octant θ₂₃ & sign Δm²₃₁
M_e/_{N_e⁰} - 1 ≃ (r̄ c²₂₃ - 1)P_{2ν}(Δm²₂₁, θ₁₂) [Δm²₂₁ term] +(r̄ s²₂₃ - 1)P_{2ν}(Δm²₃₁, θ₁₃) [θ₁₃ term]

 $-2\bar{\boldsymbol{r}}s_{13}s_{23}c_{23}Re(A_{ee}^*A_{\mu e}) \quad [\boldsymbol{\delta_{CP}} \text{ term}]$

* In our analysis excess of sub-GeV e's \Rightarrow slight preference for $\theta_{13} < 45^{\circ}$ in ATM Also analysis by Fogli etal 1205.5254 Not so clear in SK analysis Talks by J. Kameda and K. Okumura

3 ν Analysis: θ_{13} from Reactors and Flux anomaly

- Recently the reactor $\bar{\nu}_e$ fluxes have been recalculated T.A. Mueller et al.,[arXiv:1101.2663].;P. Huber, [arXiv:1106.0687].
- Both reevaluations find higher fluxes by about 3.5 %

• If due to oscillations $\Delta m^2 \sim eV^2 \Rightarrow$ sterile ν 's (more soon)

3 ν Analysis: θ_{13} from Reactors and Flux anomaly

- Recently the reactor $\bar{\nu}_e$ fluxes have been recalculated T.A. Mueller et al.,[arXiv:1101.2663].;P. Huber, [arXiv:1106.0687].
- Both reevaluations find higher fluxes by about 3.5 %

- For 3ν analysis a consistent approach (T. Schwetz et. al. [arXiv:1103.0734]):
 - Fit oscillation parameters and reactor fluxes simultaneously
 - Use theoretical calculation and/or RSBL data as priors

3 ν Analysis: θ_{13} from Reactors and Flux anomaly

- Experiments without near detector (CHOOZ, Palo-Verde,D-CHOOZ) sensitive to the flux assumptions
- DAYA-BAY and RENO
 Near-Far comparison
 ⇒ results flux independent
- Two extreme priors :
 - a) Use fluxes from Huber 1106.0687 without RSBL data

 $\sin^2 \theta_{13} = 0.023^{+0.0026}_{-0.0024}$

b) Leave flux free and include RSBL $\sin^2 \theta_{13} = 0.022^{+0.0026}_{-0.0023}$ Uncertainty at ~ 0.5–1 σ level

3 u Analysis: Reactor Data and Δm^2_{31}

- Due to different baselines
 the combination of reactors
 provides independent determination
 of the largest mass splitting
- Improved with Daya-Bay spectrum

3 ν Analysis: LBL vs REACT and θ_{23} and Ordering

• In LBL APP $\nu_{\mu} \rightarrow \nu_{e}$

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{12}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin \left(\frac{V_E L}{2}\right) \sin \left(\frac{B_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right) B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

So
$$\sin^2 2\theta_{APP} = 2\sin^2 \theta_{23} \sin^2 2\theta_{13}$$

• In LBL DIS
$$P_{\mu\mu} \simeq 1 - \sin^2 2\theta_{\text{DIS}} \sin^2 \left(\frac{\Delta_{31} L}{2}\right)$$

So $\sin^2 \theta_{\text{DIS}} = \cos^2 \theta_{13} \sin^2 \theta_{23} \neq \frac{\pi}{4}$

 \Rightarrow two possible octacts for θ_{23}

• In Reactor
$$P_{ee} \simeq \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{31} L}{2}\right)$$

So $\sin^2 2\theta_{\text{REAC}} = \sin^2 2\theta_{13}$

If
$$\begin{cases} \sin^2 2\theta_{\text{REAC}} \leq \sin^2 2\theta_{\text{APP}} \Rightarrow \theta_{23} \geq \frac{\pi}{4} \text{ favoured} \\ \sin^2 2\theta_{\text{REAC}} \geq \sin^2 2\theta_{\text{APP}} \Rightarrow \theta_{23} \leq \frac{\pi}{4} \text{ favoured} \end{cases}$$

3 ν Analysis: LBL vs REACT and θ_{23} and Ordering

• In LBL APP $\nu_{\mu} \rightarrow \nu_{e}$

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp} L}{2}\right) + \tilde{J} \frac{\Delta_{12}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin \left(\frac{V_E L}{2}\right) \sin \left(\frac{B_{\mp} L}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$$

$$B_{\pm} = \Delta_{31} \pm V_E \ \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

- So $\sin^2 2\theta_{APP} = 2\sin^2 \theta_{23} \sin^2 2\theta_{13}$
- In LBL DIS $P_{\mu\mu} \simeq 1 \sin^2 2\theta_{\text{DIS}} \sin^2 \left(\frac{\Delta_{31} L}{2}\right)$ So $\sin^2 \theta_{\text{DIS}} = \cos^2 \theta_{13} \sin^2 \theta_{23} \neq \frac{\pi}{4}$ \Rightarrow two possible octacts for θ_{23}
- In Reactor $P_{ee} \simeq \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{31} L}{2}\right)$ So $\sin^2 2\theta_{\text{REAC}} = \sin^2 2\theta_{13}$

If
$$\begin{cases} \sin^2 2\theta_{\text{REAC}} \leq \sin^2 2\theta_{\text{APP}} \Rightarrow \theta_{23} \geq \frac{\pi}{4} \text{ favoured} \\ \sin^2 2\theta_{\text{REAC}} \geq \sin^2 2\theta_{\text{APP}} \Rightarrow \theta_{23} \leq \frac{\pi}{4} \text{ favoured} \end{cases}$$

3 ν Analysis: LBL vs REACT and θ_{23} and Ordering

• In LBL APP
$$\nu_{\mu} \rightarrow \nu_{e}$$

 $P_{\mu e} \simeq s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^{2} \sin^{2} \left(\frac{B_{\mp}L}{2}\right)$
 $+\tilde{J} \frac{\Delta_{12}}{V_{E}} \frac{\Delta_{31}}{B_{\mp}} \sin \left(\frac{V_{E}L}{2}\right) \sin \left(\frac{B_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$
 $B_{\pm} = \Delta_{31} \pm v_{E} \ \bar{J} = c_{13} \sin^{2} 2\theta_{13} \sin^{2} 2\theta_{23} \sin^{2} 2\theta_{12}$
So $\sin^{2} 2\theta_{APP} = 2 \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}$
• In LBL DIS $P_{\mu\mu} \simeq 1 - \sin^{2} 2\theta_{DIS} \sin^{2} \left(\frac{\Delta_{31}L}{2}\right)$
So $\sin^{2} \theta_{DIS} = \cos^{2} \theta_{13} \sin^{2} \theta_{23} \neq \frac{\pi}{4}$
 \Rightarrow two possible octacts for θ_{23}
• In Reactor $P_{ee} \simeq \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta_{31}L}{2}\right)$
So $\sin^{2} 2\theta_{REAC} = \sin^{2} 2\theta_{13}$
At present with new T2K data $\sin^{2} 2\theta_{REAC} \simeq 0.09$
 $\sin^{2} 2\theta_{APP-T2K} \simeq 0.1$
 $\Rightarrow \theta_{23} \ge \frac{\pi}{4}$ favoured

3 ν : Global Status of θ_{23} and Ordering

- θ_{23} determination in global analysis:
 - Maximal $\theta_{23} = 45$ Disfavoured at 1.4 σ level Now mostly driven by MINOS ν_{μ} DIS
 - NO: $\theta_{23} < 45$ Favoured at 1.6–2 σ level Driven by SK I–IV ATM Sub-GeV ν_e excess Also in MINOS-APP+REACT
 - –IO: $\theta_{23} > 45$ Favoured at 1.4–1.6 σ level Driven by T2K-APP+REACT

 sign(Δm²_{atm}) determination in global analysis:
 – No significant difference Normal versus Inverted IO favoured at 0-1 σ level

3*v* **Analysis: Leptonic CP violation**

- Driven by the LBL-APP vs REACT θ_{13} with slight influence of ATM
- NuFIT 1.2 (prelim) 15 NO (Huber) NO (Free + RSBL) IO (Huber) 10 IO (Free + RSBL) $\Delta\chi^2$ 5 0 90 180 270 360 0 δ_{CP}
- For IO Best $\delta \simeq 270^{\circ}$
- For NO Best $\delta \simeq 300^{\circ}$
- $(\delta_{CP} = 270 \Rightarrow \sin^2 \theta_{T2K} \text{ is smallest})$

- Projection over leptonic Jarkskog param
- $J \equiv \sin_{12} \cos_{12} \sin_{23} \cos_{23} \sin_{13} \cos_{13}^2 \sin \delta_{CP}$

Flavour Parameters: Present Status 1σ (3σ):

z-Garcia

$$\begin{split} \Delta m_{21}^2 &= 7.45 \pm 0.18 \begin{pmatrix} +0.60 \\ -0.46 \end{pmatrix} \times 10^{-5} \text{ eV}^2 \quad \theta_{12} = 33.5^{\circ} \stackrel{+0.8}{_{-0.7}} \begin{pmatrix} +2.5 \\ -2.1 \end{pmatrix} \\ \Delta m_{31}^2(N) &= 2.42 \stackrel{+0.06}{_{-0.06}} \begin{pmatrix} +0.21 \\ -0.18 \end{pmatrix} \times 10^{-3} \text{ eV}^2 \qquad \theta_{23} = \begin{cases} (N) \ 41.8^{\circ} \stackrel{+9.2^{\circ}}{_{-1.85^{\circ}}} \begin{pmatrix} +12.8^{\circ} \\ -4.8^{\circ} \end{pmatrix} \\ (I) \ 50.2^{\circ} \stackrel{+1.7^{\circ}}{_{-2.5^{\circ}}} \begin{pmatrix} +4.3^{\circ} \\ -12.6^{\circ} \end{pmatrix} \end{cases} \\ |\Delta m_{32}^2|(I) &= 2.42 \stackrel{+0.07}{_{-0.05}} \begin{pmatrix} +0.19 \\ -0.18 \end{pmatrix} \times 10^{-3} \text{ eV}^2 \qquad \theta_{13} = 8.7^{\circ} \stackrel{+0.47}{_{-0.36}} \begin{pmatrix} +1.3^{\circ} \\ -1.3^{\circ} \end{pmatrix} \\ \delta_{\text{CP}} = \begin{cases} (N) \ 315^{\circ} \stackrel{+36^{\circ}}{_{-315^{\circ}}} \\ (I) \ 270^{\circ} \stackrel{+50^{\circ}}{_{-68^{\circ}}} \begin{pmatrix} +45^{\circ} \\ -315^{\circ} \end{pmatrix} \\ \frac{+90^{\circ}}{_{-270^{\circ}}} \end{pmatrix} \end{cases} \\ |U|_{\text{LEP}(3\sigma)} &= \begin{pmatrix} 0.799 \rightarrow 0.844 & 0.515 \rightarrow 0.581 & 0.129 \rightarrow 0.173 \\ 0.212 \rightarrow 0.527 & 0.426 \rightarrow 0.707 & 0.598 \rightarrow 0.805 \\ 0.233 \rightarrow 0.538 & 0.450 \rightarrow 0.722 & 0.573 \rightarrow 0.787 \end{pmatrix} \end{split}$$

Flavour Parameters: Present Status 1σ (3σ):

z-Garcia

$$\begin{split} \Delta m_{21}^2 &= 7.45 \pm 0.18 \ \binom{+0.60}{-0.46} \times 10^{-5} \ \mathrm{eV}^2 \quad \theta_{12} = 33.5^{\circ} \overset{+0.8}{-0.7} \ \binom{+2.5}{-2.1} \\ \Delta m_{31}^2(\mathrm{N}) &= 2.42^{+0.06}_{-0.06} \ \binom{+0.21}{-0.18} \times 10^{-3} \ \mathrm{eV}^2 \qquad \theta_{23} = \begin{cases} (\mathrm{N}) \ 41.8^{\circ} \overset{+9.2^{\circ}}{-1.85^{\circ}} \ \binom{+12.8^{\circ}}{-4.8^{\circ}} \\ (\mathrm{I}) \ 50.2^{\circ} \overset{+1.7^{\circ}}{-2.5^{\circ}} \ \binom{+4.3^{\circ}}{-12.6^{\circ}} \end{cases} \\ |\Delta m_{32}^2|(\mathrm{I}) &= 2.42^{+0.07}_{-0.05} \ \binom{+0.19}{-0.18} \times 10^{-3} \ \mathrm{eV}^2 \qquad \theta_{13} = 8.7^{\circ} \overset{+0.47}{-0.36} \ \binom{+45^{\circ}}{-1.3^{\circ}} \\ (\mathrm{I}) \ 315^{\circ} \overset{+36^{\circ}}{-84^{\circ}} \ \binom{+45^{\circ}}{-315^{\circ}} \\ (\mathrm{I}) \ 270^{\circ} \overset{+50^{\circ}}{-68^{\circ}} \ \binom{+90^{\circ}}{-270^{\circ}} \end{split} \end{split}$$

• Good progress but still precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$

Neutrino Mass Scale

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlated ranges for } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* (04))

Maltoni, Schwetz, Salvado, MCGG (95%)

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlated ranges for } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* (04))

Maltoni, Schwetz, Salvado, MCGG (95%)

Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis

 $\Rightarrow \text{Correlated ranges for } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* hep-ph/0408045)

Maltoni, Schwetz, Salvado, MCGG (95%)

Analysis of Cosmological data

Bound on $\sum m_{\nu}$ changes with: cosmo parameters fix in analysis cosmo observables considered

Model	Observables	$\Sigma m_{ u}$ (eV) 95%
$\Lambda \text{CDM} + m_{\nu}$	Planck-lowL+ τ prior	≤ 1.31
$\Lambda \text{CDM} + m_{\nu}$	$Planck+WP+highL(A_L)$	≤ 1.08
$\Lambda \text{CDM} + m_{\nu}$	$Planck+Lens+WP+highL(A_L)$	≤ 0.85
$\Lambda \text{CDM} + m_{\nu}$	Planck+WP+highL	≤ 0.66
$o\Lambda \text{CDM} + m_{\nu}$	Planck+WP+highL	≤ 0.98
$\Lambda \text{CDM} + m_{\nu}$	Planck+Lens+WP+highL+BAO	≤ 0.25
$o\Lambda \text{CDM} + m_{\nu}$	Planck+Lens+WP+highL+BAO	≤ 0.36

Talk by M. Lattanzi

Light Sterile Neutrinos

Concha Gonzalez-Garcia

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim {
m eV}^2$

Reactor Anomaly

New reactor flux calculation \Rightarrow Deficit in data at $L \leq 100$ m

Explained as ν_e disappearance

Kopp etal, ArXiv 1303.3011

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (⁵¹Cr, ³⁷Ar) in callibration of Ga Solar Exp; $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Give a rate lower than expected

$$R = \frac{N_{\rm obs}}{N_{\rm Bahc}^{\rm th}} = 0.86 \pm 0.05 \ (2.8\sigma)$$

Explained as ν_e disappearance

Kopp etal, ArXiv 1303.3011

LSND, MiniBoone

 $u_{\mu} \rightarrow \nu_{e} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Light Sterile Neutrinos

• These explanations require $3+N_s$ mass eigenstates $\rightarrow N_s$ sterile neutrinos

Light Sterile Neutrinos

• These explanations require $3+N_s$ mass eigenstates $\rightarrow N_s$ sterile neutrinos

 $u_e
ightarrow
u_e \ {
m disapp}$ (REACT,Gallium,Solar, LSND/KARMEN)

- Problem: fit together $\nu_{\mu} \rightarrow \nu_{e}$ app (LSND,KARMEN,NOMAD,MiniBooNE,E776,ICARUS) $\nu_{\mu} \rightarrow \nu_{\mu}$ disapp (CDHS,ATM,MINOS,MiniBooNE)
- Generically: $P(\nu_e \rightarrow \nu_\mu) \sim |U_{ei}^* U_{\mu i}|$ [*i* =heavier state(s)]

But $|U_{ei}|$ constrained by $P(\nu_e \rightarrow \nu_e)$ disappearance data And $|U_{\mu i}|$ constrained by $P(\nu_\mu \rightarrow \nu_\mu)$ disappearance data Talk by J.Kopp

Light Sterile Neutrinos:3+1

 Comparing the parameters required to explain signals with bounds from dissap Kopp etal, ArXiv 1303.3011 Giunti etal, ArXiv 1308.5288

- Difference in the analysis of both appearance and dissapearance
- Somewhat different conclusions:

	$\chi^2_{ m min}/ m dof$	$\chi^2_{ m PG}/ m dof$	PG
K etal	712/(689 - 6)	18.0/2	1.2×10^{-4}
G etal LOW	291.7/(259 - 3)	12.7/2	2×10^{-3}

Light Sterile Neutrinos: Two Steriles

• Comparing the parameters required to explain signals with bounds from dissap Kopp etal, ArXiv 1303.3011

3+2

1+3+1

Gonzalez-Garcia

Also tension with cosmo bounds on dark radiation Talk by N Saviano

Determination of Matter Potential: Non Standard ν **Int**

• In the three-flavor oscillation picture, the neutrino evolution equation reads:

$$i\frac{d}{dx}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H^{\nu}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} \quad \text{with} \ H^{\nu} = H_{\text{vac}} + H_{\text{mat}} \quad \text{and} \quad H^{\bar{\nu}} = (H_{\text{vac}} - H_{\text{mat}})^*$$

• The most general matter potential can be parametrized

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} N_f(r) \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^f \end{pmatrix}$$

Deviations from $H_{\text{mat}}^{\text{SM}} = \sqrt{2}G_F N_e(r) \text{diag}(1,0,0)$ can be due to NSI

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf) , \qquad P = L, R$$

with $\varepsilon_{\alpha\beta}^f = \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR}$

• The 3ν evolution depends on 6 (vac) + 8 (mat)= 14 Parameters

Matter Potential/NSI in ATM and LBL

- Weakest contraints when
 - $\frac{2 \text{ equal eigenvalues of } H_{\text{mat}}}{\text{Friedland, Lunardini, Maltoni 04}}$
- General parametrization for this case

 $H_{\mathrm{mat}} = Q_{\mathrm{rel}} U_{\mathrm{mat}} D_{\mathrm{mat}} U_{\mathrm{mat}}^{\dagger} Q_{\mathrm{rel}}^{\dagger}$

$$\begin{cases} Q_{\rm rel} &= \operatorname{diag}\left(e^{i\alpha_1}, e^{i\alpha_2}, e^{-i\alpha_1 - i\alpha_2}\right), \\ U_{\rm mat} &= R_{12}(\varphi_{12}) R_{13}(\varphi_{13}), \\ D_{\rm mat} &= \sqrt{2}G_F N_e(r) \operatorname{diag}(\varepsilon, 0, 0) \end{cases}$$

Matter Potential/NSI in ATM and LBL

- Weakest contraints when
 - $\frac{2 \text{ equal eigenvalues of } H_{\text{mat}}}{\text{Friedland, Lunardini, Maltoni 04}}$
- General parametrization for this case

 $H_{\mathrm{mat}} = Q_{\mathrm{rel}} U_{\mathrm{mat}} D_{\mathrm{mat}} U_{\mathrm{mat}}^{\dagger} Q_{\mathrm{rel}}^{\dagger}$

$$\begin{cases} Q_{\rm rel} &= \operatorname{diag} \left(e^{i\alpha_1}, e^{i\alpha_2}, e^{-i\alpha_1 - i\alpha_2} \right), \\ U_{\rm mat} &= R_{12}(\varphi_{12}) R_{13}(\varphi_{13}), \\ D_{\rm mat} &= \sqrt{2} G_F N_e(r) \operatorname{diag}(\varepsilon, 0, 0) \end{cases}$$

So

$$\begin{aligned} \varepsilon_{ee} - \varepsilon_{\mu\mu} &= \varepsilon \left(\cos^2 \varphi_{12} - \sin^2 \varphi_{12} \right) \cos^2 \varphi_{13} - 1 \\ \varepsilon_{\tau\tau} - \varepsilon_{\mu\mu} &= \varepsilon \left(\sin^2 \varphi_{13} - \sin^2 \varphi_{12} \cos^2 \varphi_{13} \right) \\ \varepsilon_{e\mu} &= -\varepsilon \cos \varphi_{12} \sin \varphi_{12} \cos^2 \varphi_{13} e^{i(\alpha_1 - \alpha_2)} \\ \varepsilon_{e\tau} &= -\varepsilon \cos \varphi_{12} \cos \varphi_{13} \sin \varphi_{13} e^{i(2\alpha_1 + \alpha_2)} \\ \varepsilon_{\mu\tau} &= \varepsilon \sin \varphi_{12} \cos \varphi_{13} \sin \varphi_{13} e^{i(\alpha_1 + 2\alpha_2)} \end{aligned}$$

No bound on ε from ATM+LBL

Maltoni, MCG-G, Salvado ArXiv:1103.4265

Matter Potential/NSI in Solar and KamLAND ^{z-Garcia}

• In
$$|\Delta m_{31}^2| \to \infty$$
 : $P_{ee} = c_{13}^4 P_{\text{eff}} + s_{13}^4$

$$H_{\text{mat}}^{\text{eff}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} c_{13}^2 & 0\\ 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_f N_f(r) \begin{pmatrix} -\varepsilon_D^f & \varepsilon_N^f\\ \varepsilon_N^{f*} & \varepsilon_D^f \end{pmatrix}$$

$$\begin{split} \varepsilon_{D}^{f} &= c_{13}s_{13} \operatorname{Re} \left[e^{i\delta_{\mathrm{CP}}} \left(s_{23} \, \varepsilon_{e\mu}^{f} + c_{23} \, \varepsilon_{e\tau}^{f} \right) \right] \\ &- \left(1 + s_{13}^{2} \right) c_{23}s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^{f} \right) \\ &- \frac{c_{13}^{2}}{2} \left(\varepsilon_{ee}^{f} - \varepsilon_{\mu\mu}^{f} \right) \\ &+ \frac{s_{23}^{2} - s_{13}^{2} c_{23}^{2}}{2} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \\ \varepsilon_{N}^{f} &= c_{13} \left(c_{23} \, \varepsilon_{e\mu}^{f} - s_{23} \, \varepsilon_{e\tau}^{f} \right) \\ &+ s_{13} e^{-i\delta_{\mathrm{CP}}} \left[s_{23}^{2} \, \varepsilon_{\mu\tau}^{f} - c_{23}^{2} \, \varepsilon_{\mu\tau}^{f*} \\ &+ c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \right] \end{split}$$

Matter Potential/NSI in Solar and KamLAND ^{z-Garcia}

• In
$$|\Delta m_{31}^2| \to \infty$$
: $P_{ee} = c_{13}^4 P_{eff} + s_{13}^4$
 $H_{mat}^{eff} = \sqrt{2}G_F N_e(r) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix}$
 $+\sqrt{2}G_F \sum_f N_f(r) \begin{pmatrix} -\varepsilon_D^f & \varepsilon_N^f \\ -\varepsilon_N^{f*} & \varepsilon_D^f \end{pmatrix}$

$$\begin{split} \varepsilon_{D}^{f} &= c_{13}s_{13} \operatorname{Re} \left[e^{i\delta_{\mathrm{CP}}} \left(s_{23} \varepsilon_{e\mu}^{f} + c_{23} \varepsilon_{e\tau}^{f} \right) \\ &- \left(1 + s_{13}^{2} \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^{f} \right) \\ &- \frac{c_{13}^{2}}{2} \left(\varepsilon_{ee}^{f} - \varepsilon_{\mu\mu}^{f} \right) \\ &+ \frac{s_{23}^{2} - s_{13}^{2} c_{23}^{2}}{2} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \\ \varepsilon_{N}^{f} &= c_{13} \left(c_{23} \varepsilon_{e\mu}^{f} - s_{23} \varepsilon_{e\tau}^{f} \right) \\ &+ s_{13} e^{-i\delta_{\mathrm{CP}}} \left[s_{23}^{2} \varepsilon_{\mu\tau}^{f} - c_{23}^{2} \varepsilon_{\mu\tau}^{f*} \\ &+ c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f} \right) \right] \end{split}$$

• LMA and LMA-D ($\theta_{12} > \frac{\pi}{4}$) allowed

Matter Potential/NSI in Solar and KamLAND ^{z-Garcia}

• In
$$|\Delta m_{31}^2| \to \infty$$
: $P_{ee} = c_{13}^4 P_{eff} + s_{13}^4$
 $H_{mat}^{eff} = \sqrt{2}G_F N_e(r) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix}$
 $+\sqrt{2}G_F \sum_f N_f(r) \begin{pmatrix} -\varepsilon_D^f & \varepsilon_N^f \\ \varepsilon_N^{f*} & \varepsilon_D^f \end{pmatrix}$
 $\varepsilon_D^f = c_{13}s_{13} \operatorname{Re} \left[e^{i\delta_{CP}} \left(s_{23} \varepsilon_{e\mu}^f + c_{23} \varepsilon_{e\tau}^f \right) \right]$

$$\begin{split} \varepsilon_{D}^{f} &= c_{13}s_{13}\operatorname{Re}\left[e^{i\delta_{CP}}\left(s_{23}\varepsilon_{e\mu}^{s} + c_{2}\right) \\ &- \left(1 + s_{13}^{2}\right)c_{23}s_{23}\operatorname{Re}\left(\varepsilon_{\mu\tau}^{f}\right) \\ &- \frac{c_{13}^{2}}{2}\left(\varepsilon_{ee}^{f} - \varepsilon_{\mu\mu}^{f}\right) \\ &+ \frac{s_{23}^{2} - s_{13}^{2}c_{23}^{2}}{2}\left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f}\right) \\ &+ \frac{s_{13}e^{-i\delta_{CP}}\left[s_{23}^{2}\varepsilon_{e\mu}^{f} - s_{23}\varepsilon_{e\tau}^{f}\right) \\ &+ s_{13}e^{-i\delta_{CP}}\left[s_{23}^{2}\varepsilon_{\mu\tau}^{f} - c_{23}^{2}\varepsilon_{\mu\tau}^{f*} \\ &+ c_{23}s_{23}\left(\varepsilon_{\tau\tau}^{f} - \varepsilon_{\mu\mu}^{f}\right)\right] \end{split}$$

• LMA and LMA-D ($\theta_{12} > \frac{\pi}{4}$) allowed

Maltoni, MCG-G, Salvado ArXiv:1103.4265

Due to no observation of MSW up-turn

Matter Potential/NSI: Global Analysis

nzalez-Garcia

• All parameter space of matter potential is bounded

 $|\varepsilon^d_{e\mu}|$

 $|\varepsilon^d_{e\tau}|$

 $|\varepsilon^d_{\mu\tau}|$

0.05

0.5

0.05

0.09

0.14

0.01

0.05

0.5

0.05

 $|\varepsilon^u_{e\mu}|$

 $|\varepsilon^u_{e au}|$

 $|\varepsilon^u_{\mu\tau}|$

0.09

0.15

0.01

Bounds from global osc fit stronger than scattering ones for $\varepsilon_{\tau\beta}^{u,d}$

• First TAUP with the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

$$\Delta m_{21}^2 = 7.44 \times 10^{-5} \text{ eV}^2 (2.3\%) \qquad \begin{aligned} \Delta m_{31}^2 &= 2.45 \times 10^{-3} \text{ eV}^2 \quad \text{NO} \\ |\Delta m_{32}^2| &= 2.43 \times 10^{-3} \text{ eV}^2 \quad \text{IO} \end{aligned}$$
(2.6%)
$$\sin^2 \theta_{12} &= 0.3 (4\%) \qquad \qquad \sin^2 \theta_{23} = \begin{array}{c} 0.59 \quad \text{IO} \\ 0.44 \quad \text{NO} \end{array}$$
(8.2%)
$$\sin^2 \theta_{13} = 0.023 (9.6\%) \end{aligned}$$

• First TAUP with the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

$$\Delta m_{21}^2 = 7.44 \times 10^{-5} \text{ eV}^2 (2.3\%) \qquad \begin{aligned} \Delta m_{31}^2 &= 2.45 \times 10^{-3} \text{ eV}^2 \quad \text{NO} \\ |\Delta m_{32}^2| &= 2.43 \times 10^{-3} \text{ eV}^2 \quad \text{IO} \end{aligned} (2.6\%) \\ \sin^2 \theta_{12} &= 0.3 (4\%) \qquad \qquad \sin^2 \theta_{23} = \begin{array}{c} 0.59 \quad \text{IO} \\ 0.44 \quad \text{NO} \end{array} (8.2\%) \qquad \qquad \sin^2 \theta_{13} = 0.023 (9.6\%) \end{aligned}$$

• Still ignore or not significantly determined (But interesting interplay LBL/REACT) Majorana or Dirac? θ_{23} Octant Absolute ν mass Normal or Inverted ? CP violation in leptons?

• First TAUP with the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

$$\Delta m_{21}^2 = 7.44 \times 10^{-5} \text{ eV}^2 (2.3\%) \qquad \begin{aligned} \Delta m_{31}^2 &= 2.45 \times 10^{-3} \text{ eV}^2 \quad \text{NO} \\ |\Delta m_{32}^2| &= 2.43 \times 10^{-3} \text{ eV}^2 \quad \text{IO} \end{aligned} (2.6\%) \\ \sin^2 \theta_{12} &= 0.3 (4\%) \qquad \qquad \sin^2 \theta_{23} = \begin{array}{c} 0.59 \quad \text{IO} \\ 0.44 \quad \text{NO} \end{array} (8.2\%) \qquad \qquad \sin^2 \theta_{13} = 0.023 (9.6\%) \end{aligned}$$

- Still ignore or not significantly determined (But interesting interplay LBL/REACT) Majorana or Dirac? θ_{23} Octant Absolute ν mass Normal or Inverted ? CP violation in leptons?
- Sterile ν 's: Not satisfactory description of all LBL anomalies

• First TAUP with the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

$$\Delta m_{21}^2 = 7.44 \times 10^{-5} \text{ eV}^2 (2.3\%) \qquad \begin{aligned} \Delta m_{31}^2 &= 2.45 \times 10^{-3} \text{ eV}^2 \quad \text{NO} \\ |\Delta m_{32}^2| &= 2.43 \times 10^{-3} \text{ eV}^2 \quad \text{IO} \end{aligned} (2.6\%) \\ \sin^2 \theta_{12} &= 0.3 (4\%) \qquad \qquad \sin^2 \theta_{23} = \begin{array}{c} 0.59 \quad \text{IO} \\ 0.44 \quad \text{NO} \end{array} (8.2\%) \qquad \qquad \sin^2 \theta_{13} = 0.023 (9.6\%) \end{aligned}$$

- Still ignore or not significantly determined (But interesting interplay LBL/REACT) Majorana or Dirac? θ_{23} Octant
- Absolute ν massNormal or Inverted ?CP violation in leptons?
- Sterile ν 's: Not satisfactory description of all LBL anomalies
- Purely empirical determination of matter potential
 - \Rightarrow strongest constraints on vector NSI of ν_{τ}