Other WIMP Direct Detection Experiments

Jodi Cooley Southern Methodist University

Outline

- Principles common to experiments
- The Experiments
 - Part 1: The low mass region
 - Part 2: The long standing DAMA/LIBRA experiment
 - Part 3: The search continues...
- Concluding Remarks

World-Wide Experiments

Phonon/Charge/Light: CDMS/SuperCDMS EDELWEISS CRESST Charge Only: CoGeNT/C4 TEXANO CDEX CDMSlite

Multi-purpose:

Majorana Demonstrator COURE-0/COURE Modulation: DAMA/LIBRA DM-ICE KIMS ANAIS SABRE KamLAND-PICO

Directional: DRIFT DM-TPC

Other: DAMIC NEXT

Bubble Chambers/Superheated: PICASSO COUPP PICO

*Experiments in red are presenting results or status in parallel sessions.

World-Wide Experiments

Phonon/Charge/Light:		Modulation:	Directional:		
CDMS/SuperCDMS		DAMA/LIBRA	DRIFT		
EDEL	VEICC		M-TPC		
CRES Charge CoGel TEXA CDEX	Too Many Time -	Experiments, Too Little My Apology for not Covering All	er: AMIC EXT		
CDMS			leated:		
Multi-pur	rpose:	PICASSO			
Majora	na Demonstrat	or COUPP			
COURI	E-0/COURE	PICO-lite			
*Experim	nents in red are p	resenting results or status in para	allel sessions.		

Direct Detection

Site experiments underground.

Active Muon Veto:

rejects events from cosmic rays

- Scintillating panels
- Water/Liquid Scintillator Shield

SCDMS active muon veto

SABRE LAB shield design

Use Passive Shielding

Pb: shielding from gammas resulting from radioactivity

Polyethyene: moderate neutrons produced from fission decays and from (α,n) interactions resulting from U/ Th decays

SCDMS - Layers of Polyethylene and Lead

Use Clean Materials

Community Material Assay Database												
	S	Search	Submit	Settings	About							
	copper					٩						
• EXO (2008)	Copper, OFRP, Norddeutsch	e Affiner	ie	Th	< 2.4 pp	: U	< 2.9 ppt		×			
• EXO (2008)	Copper tubing, Metallica SA			Th	< 2 pp	: U	< 1.5 ppt		ж			
> ILIAS ROSEBUD	Copper, OFHC								×			
> XENON100 (2011)	Copper, Norddeutsche Affin	erie		Th-228	21() muBq/kg	U-238	70() muBq/kg		×			
> XENON100 (2011)	Copper, Norddeutsche Affiin	nerie		Th-228	< 0.33 mBq/kg	U-238	< 11 mBq/kg		×			
▶ EXO (2008)	Copper gasket, Serto			Th	6.9() pp	U	12.6() ppt		×			
EXO (2008)	Copper wire, McMaster-Carr	r		Th	< 77 pp	U U	< 270 ppt		ж			

http://radiopurity.org

Supported by AARM, LBNL, MAJORANA, SMU, SJTU & others

Where Are We Now?

The Experiments Part 1: The Low Mass Region Excesses Reported by DAMA/LIBRA, CoGeNT, CRESST and CDMS

CoGeNT

- Location: Soudan
 Underground Laboratory,
 Minnesota, USA
- 440 g HPGe ionization spectrometer
- Data collection from Dec. 4, 2009 - Mar. 6, 2011 (442 live days)
- Data collection interrupted due to fire.
- Data collection resumed July 2011.

9/10/2013 - TAUP 2013 - Jodi Cooley

CoGeNT

- First claim of excess in 2010.
- Reject surface events using risetime cut (2011).
- Peaks due to cosmogenic activation of Ge
- After subtraction of known background, an exponential excess of events remains
- Fits to a variety of light-WIMP masses and couplings shown in inset of lower figure.
- Publication of new data coming soon.

MALBEK

- MAJORANA Low-background BEGe detector at KURF.
- 450g Canberra Broad Energy Ge (BEGe) detector with ultra-low background components provided by J.I. Collar.
- Location: Kimballton Underground Research Facility (KURF), VA at 1450 mwe.
- 90% exclusion limits from 221 day data run.

CRESST

- Cryogenic CaWO₄ crystals (~300 g each) are instrumented to readout phonon energy and scintillation.
- Location: Laboratori Nazionali del Gran Sasso, Italy
- Discrimination between ER and NR events via light yield (light/phonon energy)
- Net exposure: 730 kg-day (July 2009 -March 2011) from 8 detector modules.
- Observed 67 events in acceptance region (orange). <u>arXiv:1109.0702</u>
 - Analysis used a maximum likelihood in which 2 regions favored a WIMP signal in addition to predict background.
 - Excess events can not be explained by known backgrounds
 - Large background contribution

CRESST Plans

- Current data run aims to reduce background, increase detector mass.
 - Alphas new clamping design and material
 - Detector assembly in a radon free environment
 - New detector design to discriminate ²⁰⁶Po recoils
 - Add additional shielding to reduce neutron background

- June & July calibration runs with ⁵⁷Co source were successful.
- July 30th, 2013 Science Runs Begin!

CDMS II

Billard - Mon. DM I Nelson - Mon. DM II Speller - Poster

- Most backgrounds produce electron recoils and have yield (ionization/phonon energy) ~1.

- -WIMPs and neutrons produce nuclear recoils and have yield ~ 0.3 .
- Surface events can be identified using timing properties of the phonon and charge pulses.

Recent Results: CDMS II-Si Detectors

- Shades of blue indicate three separate timing cut energy ranges.
 - 7- 20 keV
 - 20 30 keV
 - 30 100 keV
- Background Estimate
 - Surface Events
 - $0.41^{+0.20}_{-0.08}(stat.)^{+0.28}_{-0.24}(syst.)$
 - < 0.13 neutrons from Cosmogenics & Radiogenics
 - < 0.08 206 Pb recoils from 210 Pb decays

Billard - Mon. DM I

CDMS II - Si Results

- Three events observed in the signal region.
- A profile likelihood analysis favors a WIMP+background hypothesis over the known background estimate as the source of our signal at the 99.81% C.L. (~3σ, p-value: 0.19%)
 - CoGeNT (2013)
 CRESST-II (2012)
 DAMA/LIBRA (2008)
 - -- XENON100 (2012)
 - -- XENON10 S2 (2013)
 - -- EDELWEISS Low-threshold (2012)
 - --- CDMS II Ge (2010)
 - --- CDMS II Ge Low-threshold (2011)
 - ----- 90% Upper Limit,
 - 90% Upper Limit CDMS II Si Combined
 - Best fit,
 - **68%** C.L.,
 - <u>90%</u> C.L.,

- The maximum likelihood occurs at a WIMP mass of 8.6 GeV/ c^2 and WIMP-nucleon cross section of 1.9 x 10⁻⁴¹.
- Does not rise to level of discovery, but does call for further investigation.

SuperCDMS (a) Soudan

- Currently operating 5 towers of advanced iZIP detectors (~9 kg Ge) in the existing cryostat at the Soudan Underground Laboratory.
- After 3 years of operation, expected to improve sensitivity to spin-independent WIMP-nucleon interactions by a factor of ~10 over existing CDMS II results.

Installation complete Nov. 8, 2011. Operating with final detector settings since Mar. 2012.

SCDMS iZIPs: Charge Signal

Bulk Events:

Equal but opposite ionization signal appears on both faces of detector (symmetric) **Surface Events:**

Ionization signal appears on one detector face (asymmetric) /

arXiv:1305.2405

SCDMS iZIPs: Charge Signal

Bulk Events:

Equal but opposite ionization signal appears on both faces of detector (symmetric) **Surface Events:**

Ionization signal appears on one detector face (asymmetric)

arXiv:1305.2405

- ~50% fiducial volume (8-115 keVr)
- < 0.6 events in 0.3 ton-years
- Good enough for a 200 kg experiment run for 4 years at SNOLAB!

CDMSlite

- Alternate running mode to explore low mass WIMPs utilizing Luke phonons

 $E_{luke} = N_{e/h} \ x \ eV_b$

- Luke energy scales as bias voltage and noise remains constant until breakdown

- Resulting Luke amplification has excellent energy resolution potentially down to 1.3 eeV_{ee}.
- Resolution of various Ge activation lines.

New Results to be Announced Wednesday!

Future: SuperCDMS @ SNOLAB

Planned Setup

- cryostat volume of up to 400 kg target
- 200 kg experiment with sensitivity of 8 x 10⁻⁴⁷ cm² at 60 GeV/c²
- Pb/Cu shielding for external radiation
- increased PE shielding (neutrons)
- -possible neutron veto

 Calibration runs at Soudan indicate that the new iZIPs have good enough surface rejection capabilities for a 200 kg experiment at SNOLAB to run 4 years! (arXiv:1305.2405)

Eitel - Tues. DM III Eitel - Tues. DM III

- Discrimination from ionization yield and charge collection symmetry.

- Located in the Laboratoire
 Souterrain de Modane (LSM)
 between Italy and France.
- Detectors instrumented with electrodes to measure charge and NTD thermal sensors to measure phonon signal.

EDELWEISS III

EDELWEISS III - Projections

Sept. 2013

- EDELWEISS III Commissioning runs underway
- 15 FID detectors of mass 800g each
- -upgraded cryostat, readout electronics and kapton cables
- -New PE shield and copper screens

End of 2013

- Fully equiped cryostat with 40 FID detectors of 800g mass each.

The Experiments Part 2: Addressing a Long Standing Issue

DAMA/LIBRA Modulation Signal

Signal Modulation

- Baryons travel together in roughly circular orbits with small velocity dispersion
- Dark matter particles travel individually with no circular dependence and large velocity dispersion

 V_{θ} (at out galactic radius)

- As a result, the flux of WIMPs passing through Earth modulate over the course of a year as Earth rotates around the sun.