WIMP Dark Matter Direct-Detection Searches in Noble Gases

Laura Baudis University of Zurich September 10, 2013

 $\left| \frac{m_N \mathcal{L}_{th}}{2\mu^2} \right|$

- Elastic collision with atomic nuclei in ultra-low background detectors
- Energy of recoiling nucleus: few keV to tens of keV

z (KPC)

15

10

y (kpc)

- 5

-10

-15-15

K (*kpc*)

WIMPs in the galactic halo

Velocity distribution of WIMPs in the galaxy

High-resolution cosmological simulation with baryons: F.S. Ling et al, JCAP02 (2010) 012

$$\rho_{local} \sim 0.3 \,\mathrm{GeV} \cdot \mathrm{cm}^{-3}$$

=> WIMP flux on Earth: $\sim 10^5 \ cm^{-2}s^{-1}$ (Mw=100 GeV)

From cosmological simulations of galaxy formation: departures from the simplest case of a Maxwell-Boltzmann distribution

In direct detection experiments, mostly a simple MB distribution, truncated at vesc, is used in the sensitivity calculation

WIMP masses and scattering cross sections

- Example for theoretical predictions from supersymmetry
- Scattering cross sections on protons/neutrons down to 10⁻⁴⁸ cm²

WIMP masses and scattering cross sections

- Example for theoretical predictions from supersymmetry
- Scattering cross sections on protons/neutrons down to 10⁻⁴⁸ cm²

Interaction rates for elastic scattering

• Recoil rate after integration over WIMP velocity distribution

$$R \sim 0.13 \frac{\text{events}}{\text{kg year}} \left[\frac{A}{100} \times \frac{\sigma_{WN}}{10^{-38} \text{ cm}^2} \times \frac{\langle v \rangle}{220 \text{ km s}^{-1}} \times \frac{\rho_0}{0.3 \text{ GeV cm}^{-3}} \right]$$

$$v_{min} = \sqrt{\frac{m_N E_{th}}{2\mu^2}}$$

$$V_{min} = \sqrt$$

A world-wide effort to search for WIMPs

South Pole DM Ice

Noble gases in Mendeleev's Periodic Table

Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Von D. Mendelejeff. — Ordnet man Elemente nach zunehmenden Atomgewichten in verticale Reihen so, dass die Horizontalreihen analoge Elemente enthalten, wieder nach zunehmendem Atomgewicht geordnet, so erhält man folgende Zusammenstellung, aus der sich einige allgemeinere Folgerungen ableiten lassen.

1. Die nach der Grösse des Atomgewichts geordneten Elemente zeigen eine stufenweise Abänderung in den Eigenschaften.

2. Chemisch-analoge Elemente haben entweder übereinstimmende Atomgewichte (Pt, Ir, Os), oder letztere nehmen gleichviel zu (K. Rb, Cs).

3. Das Anordnen nach den Atomgewichten entspricht der Werthigkeit der Elemente und bis zu einem gewissen Grade der Verschiedenheit im chemischen Verhalten, z. B. Li, Be, B, C, N, O, F.

4. Die in der Natur verbreitetsten Elemente haben kleine Atomgewichte

Argon: "the inactive one", neon: "the new one", krypton: "the hidden one", xenon: "the strange one"

Discovered later by William Ramsay, student of Bunsen and professor at UC London 1904 Nobel Prize in Chemistry

"in recognition of his services in the discovery of the inert gaseous elements in air, and his determination of their place in the periodic system".

Noble gases underground

Liquefied noble gases as WIMP targets

- Dense, homogeneous target with self-shielding; fiducialization
- Large detector masses feasible at moderate costs
- High light (40 photons/keV) and charge ($W_{LAr} = 24 \text{ eV}$, $W_{LXe} = 15 \text{ eV}$) yields

Dropontion [unit]	Vo	Δ 10	No
Properties [unit]	ле	Ar	INE
Atomic number:	54	18	10
Mean relative atomic mass:	131.3	40.0	20.2
Boiling point $T_{\rm b}$ at 1 atm [K]	165.0	87.3	27.1
Melting point $T_{\rm m}$ at 1 atm [K]	161.4	83.8	24.6
Gas density at 1 atm & 298 K $[gl^{-1}]$	5.40	1.63	0.82
Gas density at 1 atm & $T_{\rm b} \ [{\rm g l^{-1}}]$	9.99	5.77	9.56
Liquid density at $T_{\rm b} [{\rm g cm^{-3}}]$	2.94	1.40	1.21
Dielectric constant of liquid	1.95	1.51	1.53
Volume fraction in Earth's atmosphere [ppm]	0.09	9340	18.2

W. Ramsay: "These gases occur in the air but sparingly as a rule, for while argon forms nearly 1 hundredth of the volume of the air, neon occurs only as 1 to 2 hundred-thousandth, helium as 1 to 2 millionth, krypton as 1 millionth and xenon only as about 1 twenty-millionth part per volume. *This more than anything else will enable us to form an idea of the vast difficulties which attend these investigations*."

Scintillation/ionization process in noble liquids

Energy scale for nuclear recoils: light yield

Field dependance: LXe, also measured by Manzur et al down to 4 keVnr, no significant quenching of the light yield was observed

Energy scale for electronic recoils: light yield

- The light yield decreases with lower deposited energies in the LXe; field quenching is ~ 75%, only weak field-dependance
- The energy threshold of XENON100 is 2.3 keV => can test DAMA/LIBRA

Xenon: an additional WIMP channel

- Spin-dependent WIMP-nucleus inelastic scattering
 - new, promising structure factors
 - ➡ shifts ROI to higher energies

- Theory: Ellis, Flores, Lewin,1988 Searches: Ejiri et al, 1993, Belli et al, 1996, Avignone et al, 2000
- ➡ integrated rate dominates at moderate energies, depending on the WIMP mass
- probes the high-tail of the galactic WIMP velocity distribution

Two detector concepts

Double phase (TPC)

Particle discrimination

- Pulse shape of prompt scintillation signal
 - ➡ the ratio of light from singlet and triplet de
- Charge versus light (LAr and LXe)
 - the recombination probability, and thus the

LXe (XENON100)

LAr (DarkSide-10)

Single-phase detectors

- Challenge: ultra-low absolute backgrounds
- LAr: pulse shape discrimination, factor 10⁹-10¹⁰ for gammas/betas

XMASS-RFB at Kamioka:

835 kg LXe (100 kg fiducial), single-phase, 642 PMTs unexpected background found detector refurbished (RFB) new run this fall -> 2013

CLEAN at SNOLab:

500 kg LAr (150 kg fiducial) single-phase open volume under construction to run in 2014

DEAP at SNOLab:

3600 kg LAr (1t fiducial) single-phase detector under construction to run in 2014

LAr-TPCs: Scale

Time projection chambers

XENON100 at LNGS:

161 kg LXe (~50 kg fiducial)

242 1-inch PMTs taking new science data

LUX at SURF:

350 kg LXe (100 kg fiducial)

122 2-inch PMTs physics run since spring 2013 first result by the end of this year

PandaX at CJPL:

125 kg LXe (25 kg fiducial)

143 1-inch PMTs 37 3-inch PMTs started in 2013 ArDM at Canfranc:

850 kg LAr (100 kg fiducial)

28 3-inch PMTs in commissioning to run 2014 50 kg LAr (dep in ³⁹Ar) (33 kg fiducial)

38 3-inch PMTs in commissioning since May 2013 to run in fall 2013

Example of a low-energy event in XENON100

Example: XENON100 dark matter data

- Exposure: 225 days x 34 kg fiducial LXe mass
- Two events observed in signal region (1 BG event expected; there is a 26.4 % chance for upward fluctuation): at 7.1 keVnr (3.3 pe) and at 7.8 keVnr (3.8 pe) (note: zero events below 3 pe)

Noble liquid recent results: spin-independent

- No evidence for WIMPs
- Upper limit on WIMP-nucleon cross section is $2x10^{-45}$ cm² at M_W = 55 GeV $I \subseteq R \subseteq I \subseteq R \subseteq R$ XMASS: Phys. Lett. B 719 (2013)

XENON100: Phys. Rev. Lett. 109 (2012)

Noble liquid recent results: spin-dependent

¹²⁹Xe (spin-1/2) and ¹³¹Xe (spin-3/2), two isotopes with J ≠ 0 and abundance of 26.2% and 21.8% in XENON100

Phys. Rev. Lett. 111 (2013)

Future argon and xenon detectors

- Under construction: XENON1T at LNGS, 3.5 t LXe in total
 - ➡ commissioning in 2014, first run in 2015, goal 2 x 10⁻⁴⁷ cm²
- Near future + design and R&D: XENONnT (n t LXe), XMASS-1.5 (5 t LXe), DarkSide-5000 (5 t LAr), LZ (7 t LXe), DARWIN (20 t LXe)

DarkSide: 5 t LAr XMASS: 5t LXe

DARWIN: 20 t LXe/LAr

Argon and xenon complementarity

Neutrinos as backgrounds

- Electronic recoils from pp solar neutrinos: ~ 10⁻⁴⁸ cm²
- Nuclear recoils from ⁸B solar neutrinos: below ~10⁻⁴⁵ cm² for low-mass WIMPs
- Nuclear recoils from atmospheric + DSNB: below ~10⁻⁴⁸ cm²

Direct detection: sensitivity versus time

Factor ~ 10 every two years!

End