New detectors and laboratories Session:

Nucleon Decay Searches

Masato Shiozawa

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI), U of Tokyo

13th International Conference on Topics in Astroparticle and Underground Physics September 8 - 13, 2013

Motivation of Nucleon Decay Searches

- ▶Tiny v masses suggest physics with similar energy scale
- ▶ Understand large v mixing and small quark mixing in an unified way
- **▶** Unique direct test of GUTs
 - Nucleon decay searches have already provided constraints on GUT models
 - ▶O(10¹⁶)GeV is not reachable by accelerators
- ▶ Baryon number violation is required by cosmology
- ▶B (and L) is an unexplained conserved quantum number

Upper bounds on the decay rates

- ▶Super-K provides world stringent limits on many decay modes
 - $T(p→e^+π^0)>1.4×10^{34}$ years (90%C.L., 260kton · years)
 - \blacktriangleright T(p→VK⁺) >5.9×10³³ years (90%C.L., 260kton · years)
- ▶ No significant signal excess so far ⇒ Giving constraints on GUT models
 - ▶ Constraints on SUSY models (e.g. R-parity conservation)
 - ▶ minimal SU(5) and minimal SUSY SU(5) are considered to be excluded.

discovery might be around the corner

 $p \rightarrow v + K^+$ in Liq.Argon TPC

Single event discovery is possible for several decay modes.

Experimental challenges

- ▶ Require big detector "MASS"
 - ▶ Next target volume is IOkiloton~IMegaton (Super-K=50kiloton)
- Background rate must be under control
 - Improved BG rejection is required as size of detectors and exposure scale up (Super-K, next generation detectors)
 - ▶ Keep signal efficiency high
 - Improved knowledge of BG is required to extract convincing signal
- ▶ This talk will cover;
 - ▶ Super-K with efforts to improve searches
 - Next generation experiments to go beyond the Super-K

Super-Kamioka Nucleon Decay Experiment

11,146 ID PMTs(40% coverage)

5,182 ID PMTs (19% coverage)

11,129 ID PMTs(40% coverage)

Electronics Upgrade

p→e⁺+π⁰ searches

Super-K cut

- 2 or 3 Cherenkov rings
- All rings are showering
- $85 < M_{\pi 0} < 185 MeV/c^2 (3-ring)$
- No decay electron
- ullet 800 < M_{proton} < 1050 MeV/c² P_{total} < 250 MeV/c

SK-II (half PMT) forward-backward display for p \rightarrow e⁺+ π 0

Nuclear effect

- ▶ For proton decays in ¹⁶O nuclei
 - In nuclear binding energy, Fermi momentum, nucleon-nucleon correlation, secondary interactions of decay mesons

Tuning of π cross sections in Carbon.

 $p \rightarrow e^{+} + \pi^{0} \text{ in } {}^{16}\text{O}$

- ▶ For free proton decays in hydrogen
 - ▶NO nuclear effects
 - ▶ high & accurate signal efficiency is expected e.g. 87% (28%) efficiencies for p→e⁺+ π ⁰ decays in H (¹⁶O)

 $p \rightarrow e^+ + \pi^0$ in SK I-IV (260kt×yrs)

$$p \rightarrow e^+ + \pi^0$$

- detection efficiency = 40%
- atmospheric \vee BG = 0.7 events in 260kton×years 2.7±0.3(stat.)±1.2(syst.) (Mton×years)-1
- $\tau_{proton}/Br > 1.4 \times 10^{34} \text{ years } @ 90\%C.L.$

NOTE: Accurate prediction of BG is getting more important. Further BG reduction is also desired.

$p \rightarrow e^+ + \pi^0$ background calculation

•BG calculation based on atmv flux, cross sections, and detector response

 $v_n \mathbf{n} \rightarrow \mu^- \mathbf{p} \pi^0$

•	Atmospheric v flux calculations			
	 Spectrum shape 	~8%		
	Flavor ratio	<1%		
•	Neutrino interaction simulation (NEUT)			
	$-$ CC single π^0	10%		
	 CC multi pion production 	7%		
	- CC QE	8%		
	- NC	2%		
•	2ndary pion interaction in water	25%		
•	2ndary nucleon interaction in water	25%		
•	Detector resolution	22%		

Total uncertainty 44%

Confirmation by K2K accelerator ∨

PRD77:032003,2008

- ▶ BG rate was confirmed by K2K accelerator ∨ beam
 - BG=1.63+0.42/-0.33(stat.)+0.45/-0.51(syst.) (Mt×yrs)⁻¹ (EV<3GeV)
 - ▶ Consistent w/ simulation 1.8±0.3(stat.)

•Further improvements are foreseen by future cross section measurements

Potential BG reduction by neutrons

Beacom and Vagins PRL93:171101(2004)

We expect that neutrino events are often accompanied with neutrons (e.g. $\overline{V}_e + p \rightarrow e^+ + \pi^0$ fn recoiled protons kick neutrons in water etc.)

In the proton emission probability in proton decay is expected to be small.

Since SK-IV we have started recording faint signature of neutrons; $n+p\rightarrow d+\gamma(2.2MeV, \tau\sim200\mu sec)$

by new high speed pipelined electronics. Gd study is on-going.

Potential BG reduction by tighter cut

Shiozawa, talk@NNN00-Fermilab

• Ptot < 250 MeV/c (SK cut) BG=<u>**2.2**</u> ev/Mtonyrs, eff.=<u>**44%**</u>

<u>BG reduction by ~15</u>

• Ptot < 100 MeV/c (tighter cut) BG=<u>0.15</u>ev/Mtonyrs, eff.=<u>17.4%</u>

main target is free proton decays

$p \rightarrow v + K^+$ searches

(I) $K^+ \rightarrow \mu^+ \nu$, $\mu^+ \rightarrow e^+ \nu \nu$

Searches

V

K⁺ is below Cherenkov threshold

→ 236MeV/c µ and muon decay
electrons

40

Tag de-excitation γ from ¹⁵N* to reduce BG

Many efforts to improve analyses

- I.γ tagging efficiency has been improved.
- 2.high muon decay electrons efficiency in SK-IV.
- 3.better momentum reconstruction is employed.

$p \rightarrow v + K^+$ searches

(II) $K^+ \rightarrow \pi^+ \pi^0$

- $\blacktriangleright \pi^0$ efficiency was improved by dedicated π^0 finding algorithm
- ▶Shape information of π⁺ hits for BG reduction

- 260 kton×years exposure (SK-I+II+III+IV)
- $\tau_{\text{proton}}/\text{Br} > 5.9 \times 10^{33} \text{ years } @ 90\%\text{CL}$

- Summary of prompt γ and $\pi\pi$ searches -

					
		data	$p \rightarrow \nu K^+$	atmos. ν	atmos. ν
		livetime	signal efficiency	estimated bkg.	bkg. rate (evts/Mt/y)
	SK-I	91.7 kt y	$15.7 \pm 0.2\%$	0.3 evts.	2.8 ± 0.4
	SK-II	$49.2 \mathrm{\ kt\ y}$	$13.0\pm0.2\%$	0.3 evts.	6.2 ± 0.8
	SK-III	31.9 kt y	$15.6\pm0.2\%$	0.1 evts.	3.1 ± 0.5
	SK-IV	87.3 kt y	$19.1 \pm 0.2\%$	0.3 evts.	3.5 ± 0.4

PRD72,052007

SK-I paper in 2005 91.7 kt y

14.6%

1.3 evts.

Summary of Super-K

- $p \rightarrow e^+ + \pi^0$ reached to 10^{34} years
- $(p,n) \rightarrow (e^+,\mu^+) + (\pi,\eta,\rho,\omega)$ $10^{32} \sim 10^{33}$ years
- SUSY favored $p \rightarrow vK^+ > 5.9 \times 10^{33}$ years
- No excess in K^0_S , K^0_L , $V\pi^0$, $V\pi^+$
- It is important to test many decay modes
 - di-nucleon decays ($|\Delta B|=2$)
 - $pp \to K^+K^+ > 1.7 \times 10^{32}$ years
 - $pp \rightarrow e^+e^+ > 10^{33} \text{ years}$
 - neutron-antineutron oscillations
 - radiative decays $p \rightarrow (e^+, \mu^+) + \gamma$
 - invisible decays $p \rightarrow vvv$

No nucleon decay evidence so far. Sensitivity(limit) improvement of Super-K is now moderate.

Gigantic Water Cherenkov Detector: Hyper-Kamiokande

16

Photo-detector R&D

- Candidates
 - 50cm Super-K PMT
 - [NEW] High QE 50cm Hybrid Photo Detector (HPD)
 - [NEW] High QE re-designed 50cm PMT
- Test of 20cm HPD and 50cm HQE PMT in water tank from August 2013

Super Kamiokande

700

50cm HPD prototype expected in August 2013

GUT tests by Nucleon Decay Searches

► Discovery reach (3 σ) T(p \rightarrow VK⁺) \sim 1.2×10³⁴years (HK 10years) ► Limit (90%CL) T(p \rightarrow VK⁺)>3.2×10³⁴years (HK 10years)

Large Liq. Argon TPC detector: LBNO(GLACIER) and LBNE

LBNO

LBNE

Stage I: 17kton Liq.Ar TPC surface (please go to underground for proton decays)

Stage 2: Additional 20-30kt

Large Liq. Argon TPC detector

- high granularity
- high tracking capability
- good E resolution

$$p \rightarrow e^+ + \pi^0$$

- efficiency = 45%, IBG/Mtyr
- 1×10^{34} years w/ 34kton×10yrs

- efficiency = 97%, 2BG/Mtyr
- 3×10^{34} years w/ 34kton×10yrs

LENA: Liquid Scintillator Detector

Also R&D of water-based

Liq. Scintillator Minfang Yeh (BNL),

Snowmass whitepaper

Ideas to go beyond 10³⁶ years

Deep-TITAND

Idea of an under-ice detector (MIKA) under study

Summary

- Ongoing proton decay experiment
 - continuous efforts to enhance signal, reduce background neutrino events
 - No evidence so far
- Next generation nucleon decay detectors are seriously considered.
 - Extend nucleon decay search sensitivity by a order of magnitude (Water)
 - $-\tau_{proton} = 10^{34} \sim 10^{35} \text{ years}$
 - Excellent tracking of many particles including K⁺ (Argon)
 - $-\tau_{proton}$ =a few ×10³⁴ years by 34kton×10years
 - similar sensitivity for $p \rightarrow vK^+$ in scintillator detectors
 - Aiming to start operation around 2023
 - Having two or more experiments could be crucial to establish proton decays in future.