
Next-Generation Atmospheric Neutrino Experiments

[Focusing on the Neutrino Mass Hierarchy]

I. Atmospheric Neutrinos
The PMNS Matrix
Matter Effects
Fluxes and Cross Sections

II. Detectors

Antoine Kouchner
University Paris 7 Diderot- AstroParticle and Cosmology
(Disclaimer: member of HE neutrino astronomy community)

J. Brunner, A. Cabrera, A. de Gouvea, D. Grant, M. Nakahata, N. Mondal, S. Pascoli, E. Resconi, V. Van Elewyck, C. Walter, R. Wendell...

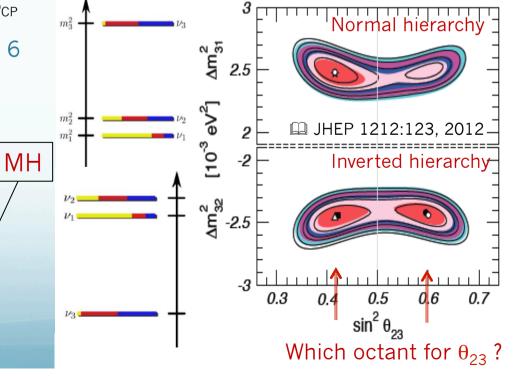
Oscillations of Massive Neutrinos

Neutrinos have distinct masses and mix (PMNS)

M.C. Gonzalez-Garcia

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\mathrm{CP}}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospheric} \\ \theta_{\mathsf{A}} \sim 45^{\circ} & \text{Reactor} \\ \theta_{13} \sim 9^{\circ} & \theta_{\odot} \sim 30^{\circ} \end{array} \quad \text{Majorana}$$


CP violating phase δ_{CP}

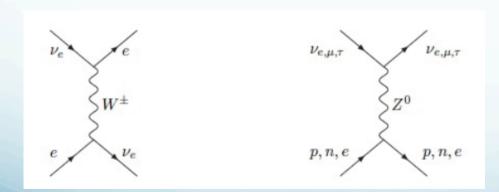
Neutrino oscillations can be described with 6 parameters (3 Dirac neutrinos):

- 3 mixing angles
- 2 mass-squared differences

$$m_1^2 < m_2^2$$

$$m_2^2 - m_1^2 \ll |m_3^2 - m_{1,2}^2|$$

- CP phase
- Absolute mass scale
- Nature (Dirac vs Majorana)
- Origin of neutrino mass and flavor
- Core-Collapse Supernovae Physics


MH with LBL experiments

• « Standard approach » :probe $v_{\mu} \leftrightarrow v_{e}$ governed by $\Delta m_{13}^{2} (\Delta_{13})$

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E} \right) + \text{ "subleading"}$$

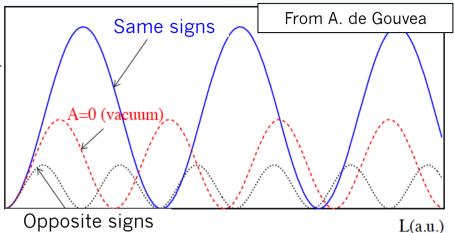
[Neglecting solar (> a few GeV and >1000's km) and CP violation effects]

- Insensitive to the sign of Δm_{13}^2 at leading order.
- Matter effects (MSW) come to the rescue

Through matter, neutrinos interact acquiring an effective mass (forward scattering) Only electron neutrinos interact through CC with electrons

→ Additional potential A in the Hamiltonian

$$A\equiv\pm\sqrt{2}G_FN_e$$
 (-)+ for (anti-)neutrinos


→ Modify the oscillation probability

Earth density variations (e.g. mantle-core) also affect the oscillations (parametric resonance)

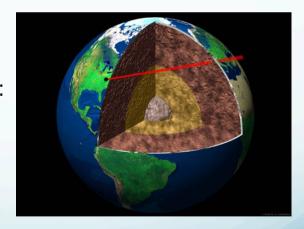
(Constant Density) Matter Effects

$$P_{\mu e} \simeq P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13}^{\text{eff}} \sin^2 \left(\frac{\Delta_{13}^{\text{eff}} L}{2}\right), \frac{\Delta_{13}^{\text{eff}}}{\Delta_{13}^{\text{eff}}}$$

$$\sin^2 2\theta_{13}^{\text{eff}} = \frac{\Delta_{13}^2 \sin^2 2\theta_{13}}{(\Delta_{13}^{\text{eff}})^2},$$

$$\Delta_{13}^{\text{eff}} = \sqrt{(\Delta_{13}\cos 2\theta_{13} - A)^2 + \Delta_{13}^2\sin^2 2\theta_{13}}$$

 $\Delta m_{13}^2 > 0$ – Normal Mass Hierarchy

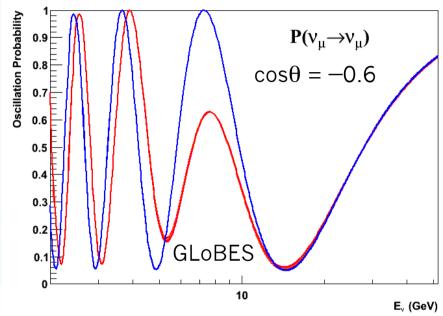

 $\Delta m_{13}^2 < 0$ – Inverted Mass Hierarchy

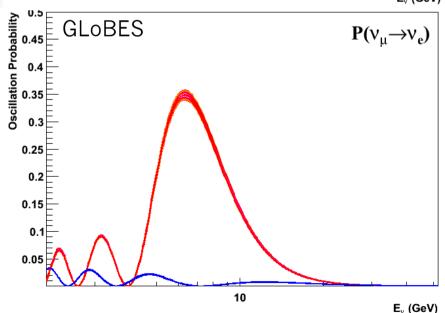
Matter resonance: A $\rightarrow \Delta_{13}\cos 2\theta_{13}$

- Effective mixing maximal
- Effective osc. frequency minimal

Resonance energy Earth:

- Mantle E_{res} ~ 7 GeV
- Core E_{res} ~ 3 GeV

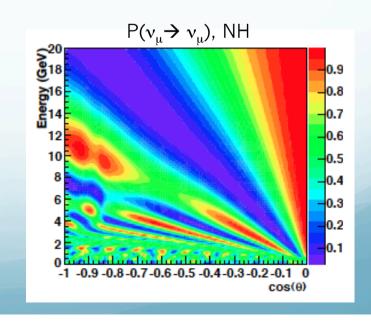


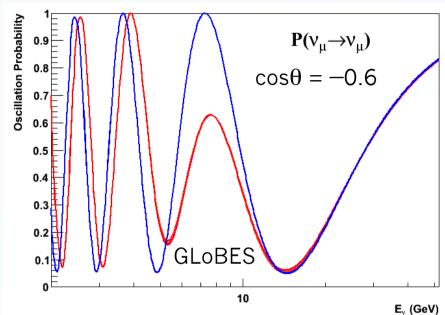

Requirements:

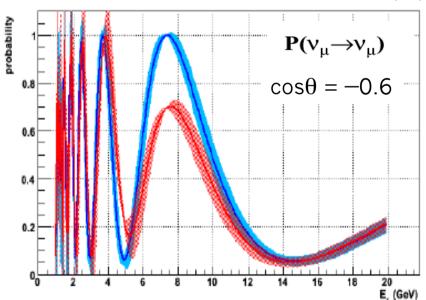
- Δ_{13} ~ A matter potential must be significant but not overwhelming
- L large enough matter effects are absent near the origin
- Distinction between neutrinos and anti-neutrinos

→ different flux and cross-sections!

Phenomenological Summary




Inverted Hierachy
Normal Hierachy


In each case, CP-phase is varied in steps of 30 degrees

- Hierarchy differences disappear at around 15 GeV
- $P(v_{\mu} \rightarrow v_{e}) < 2\%$ at 20 GeV

Phenomenological Summary

Inverted HierachyNormal Hierachy

In each case, CP-phase is varied in steps of 30 degrees

- Hierarchy differences disappear at around 15 GeV
- $P(v_{\mu} \rightarrow v_{e}) < 2\%$ at 20 GeV

Degeneracies due to parameter uncertainties must be carefully considered!

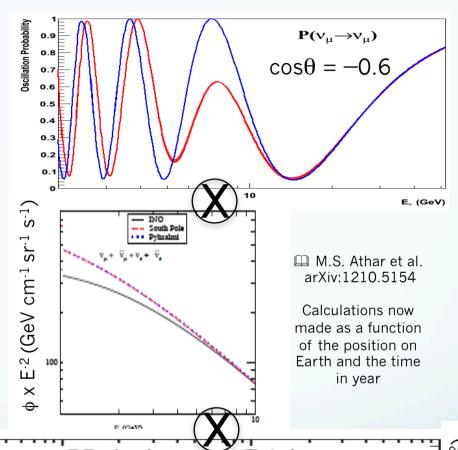
Fluxes and cross sections

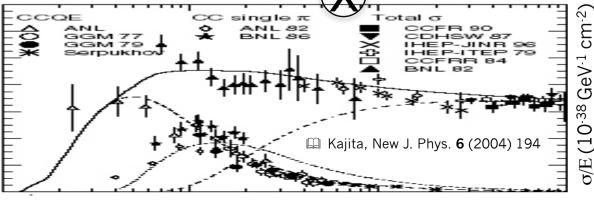
Cosmic Ray +
$$A_{air} \rightarrow \pi^+ + \dots$$

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
 $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_{e}$

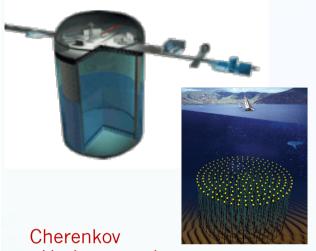
A beam for free!

▼ T. Gaisser, Id 51 (09/10/13)

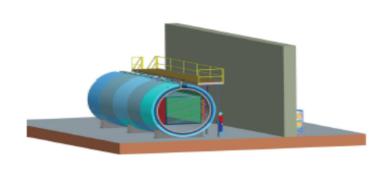

- Produce neutrinos and anti-neutrinos
- Broad energy range: Steeply falling spectrum
 - → Requires good energy resolution
- Broad path-length range
 - → Requires good direction resolution


Different cross sections for v and \overline{v} !

$$\sigma(v) \approx 2\sigma(\overline{v})$$


Three main contributions: Quasi-elastic, Resonant, DIS

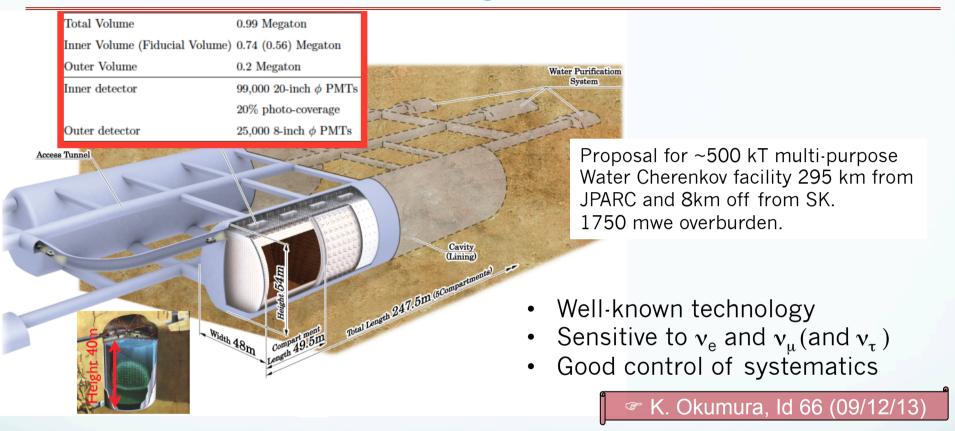
→ Use external measurements and regions without oscillations


Atmospheric detectors

- Underground

- SuperK → HyperK, MEMPHYS?
- 500 kton
- Low threshold
- No charge ID
- Deep-sea/ice
- Antares/Icecube
 →ORCA/PINGU
- Multi-Mton!
- Relatively poor E resolution
- No charge ID
- Relatively high threshold ~ GeV

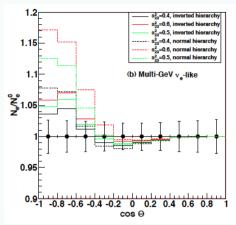
Magnetized Iron Calorimeters


- SOUDAN, MINOS → ICAL, MIND?
- 50-100 kton
- Charge separation
- Good tracking
- Hadronic shower
- Poor electron sensitivity
- Relatively high threshold ~ GeV

Liquid Argon

- Icarus → GLACIER
- 20 100 kton
- Excellent μ and e tracking
- Hadronic shower
- Low threshold
- Magnetization?

Liquid Scintillator (LENA) Not covered Accelerator Solar/ Lower Atmospheric / Super-K statistics reactor 10 TeV 100 GeV 10 MeV 100 MeV I GeV 10 GeV I TeV I EeV Pingu/ IceCube/km^3 Very high statistics Deepcore

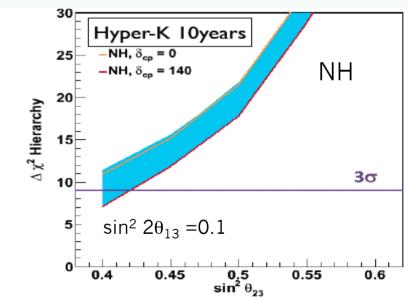

Prospects with HyperKamiokande

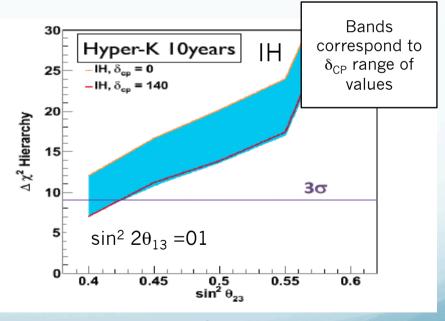
Status:

- Among top priorities in Japan (with ILC): 800 M\$ estimated cost (without beam)
- If funded, access tunnel work should start in 2016
- Excavation works in 2018
- Detector operation in 2023

Prospect for the MH (atm)

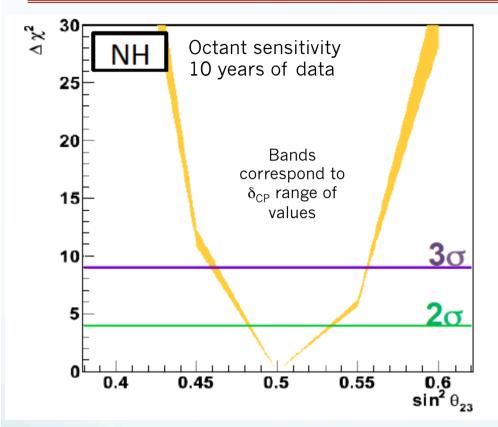
Ratio of oscillated v_{e} rate over no oscillation case

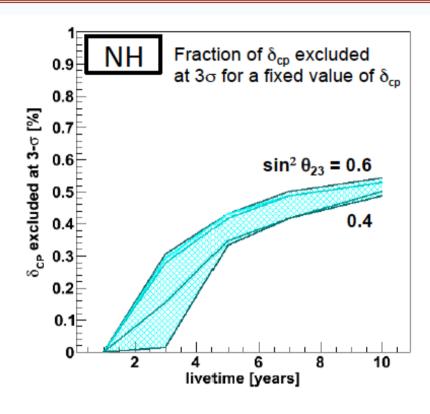

in sub-GeV and Multi-GeV channels.


$$\begin{split} \frac{\textit{N}_{\scriptscriptstyle{\theta}}}{\textit{N}_{\scriptscriptstyle{\theta}}^{0}} &\cong \Delta_{\scriptscriptstyle{1}}(\theta_{\scriptscriptstyle{13}}) \longleftarrow \text{Matter effect} \\ + \Delta_{\scriptscriptstyle{2}}(\Delta \textit{M}_{\scriptscriptstyle{12}}^{2}) \longleftarrow \text{Solar term} \\ + \Delta_{\scriptscriptstyle{3}}(\theta_{\scriptscriptstyle{13}}, \Delta \textit{M}_{\scriptscriptstyle{12}}^{2}, \underline{\delta}) \longleftarrow \text{Interference} \end{split}$$

Statistical separation of v_e and anti- v_e .

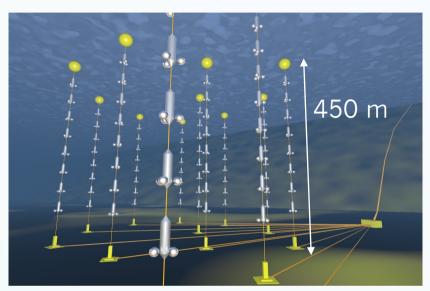
HK letter of Intent, arXiv:1109.3262v1


SK Sensitivity (σ)				
$\sin^2\theta_{23}$	now	+10 yrs		
0.4	0.70	0.98		
0.6	1.50	2.10		



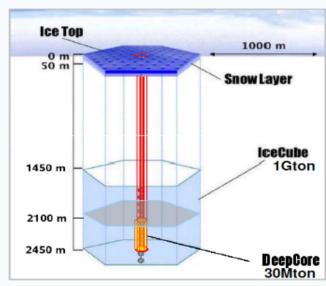
After 10 years, determine MH at $>3\sigma$ for values of $\sin^2\theta_{23} > 0.4$. Improved sensitivity is expected by adding beam data ($>1\sigma$ sensitivity alone, depending on δ_{CP}) \rightarrow $>3\sigma$ in all cases.

Prospects for θ_{23} octant and δ_{CP}


SK Sensitivity (σ) $\sin^2\theta_{23}$ now+10 yrs0.42.002.600.61.612.10

50% δ_{CP} fraction can be excluded at 3 σ after 10 yrs

From C. Walter, Neutrino Telescopes 2013


First achievements with Neutrino Telescopes

40 km Off Shore, French Riviera

12 line detector completed 2008

South Pole

lceCube (86 strings)+ DeepCore (8 strings)

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E_{\nu}}\right) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{16200 \Delta m_{32}^2 \cos \Theta}{E_{\nu}}\right)$$

Oscillations maximal at 24 GeV for vertical neutrinos (muon range~120m)

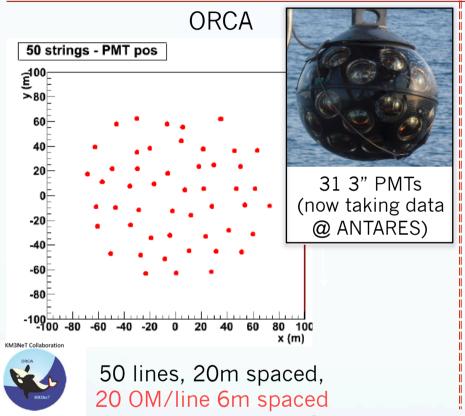
Larger effect on

Single lines

low energy

beepCore

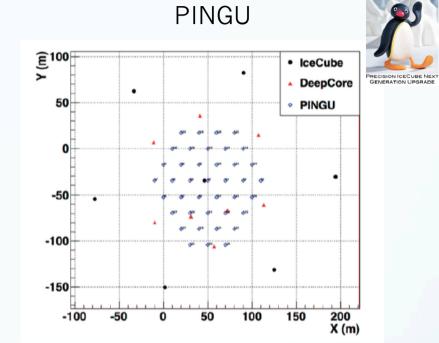
than


Multi lines
higher energy events
lceCube

Phys. Lett. B 714 (2012) 22.
Phys. Rev. Lett. 111, 081801 (2013)

M. Spurio, ld 58 (09/10/13)

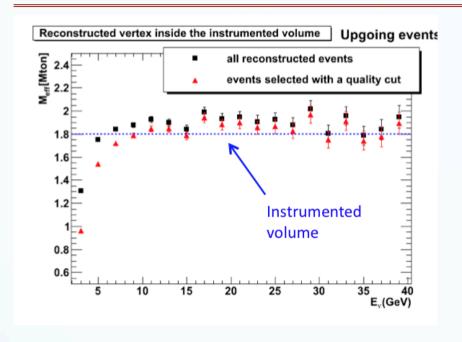
S. Euler, Id 217 (09/12/13)

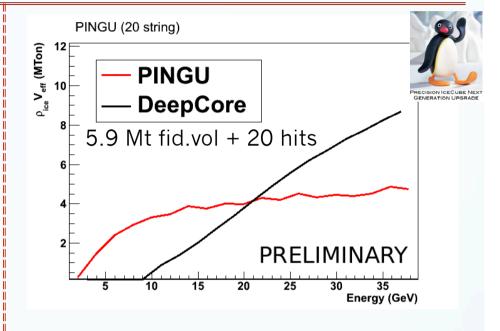

Proposed Low Energy Extensions

Instrumented volume ~2 Mt

Could be deployed in <5 years 40 M€ available in KM3NeT phase-1

R. Coniglione, Id 104 (09/12/13)


20-40 strings, 26-20m spaced, 60 OM/string 5m spaced Instrumented volume ~ 6 Mt


Could be deployed 2016-2020 if funded (8-12 M\$ + 1,25M\$/string)

D. Grant, Id 146 (09/11/13)

Optimized layouts still under study

Proposed Low Energy Extensions

KM3NeT Collaboration

ORCA

KM3NeT

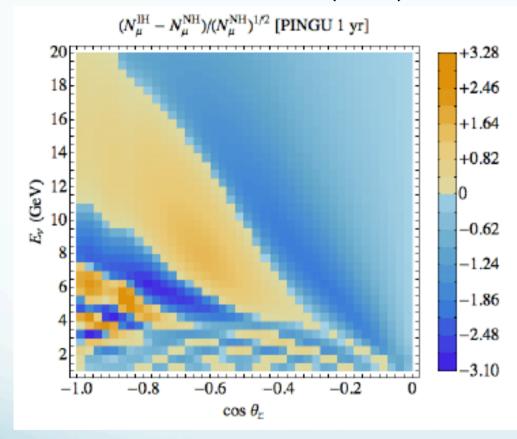
50 lines, 20m spaced, 20 DOM/line 6m spaced

Instrumented volume ~2 Mt

Could be deployed in <5 years 40 M€ available in KM3NeT phase-1

R. Coniglione, Id 104 (09/12/13)

20-40 strings, 20-25m spaced, 60 DOM/string 5m spaced Instrumented volume ~ 6 Mt


Could be deployed 2016-2020 if funded (8-12 M\$ + 1,25M\$/string)

D. Grant, Id 146 (09/11/13)

Optimized layouts still under study

First (optimistic) sensitivities

Akhmedov et al. JHEP 02 (2013) 082

With exceedingly large PINGU effective volume

$$\rho V_{\text{eff}}(E_{\nu}) = 14.6 \times [\log(E_{\nu}/\text{GeV})]^{1.8} \text{ Mt}$$

$$S^{tot} = \sqrt{\sum_{ij} S_{ij}^2} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{\sigma_{ij}^2}}$$

$$\sigma_{ij}^2 = N_{ij}^{NH} + (fN_{ij}^{NH})^2$$

Uncorrelated systematics

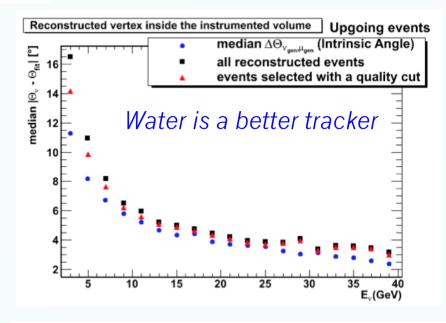
Perfect resolutions

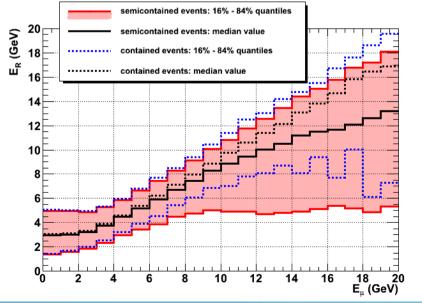
$$S=45.5\sigma$$
 (f=0%)
 $S=28.9\sigma$ (f=5%)

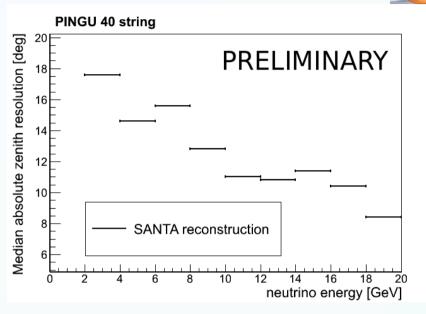
$$\sigma E=4$$
 GeV, $\sigma \theta=22.5^{\circ}$

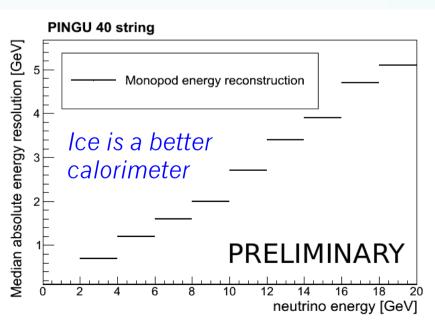
$$S=7.2\sigma$$
 (f=0%)

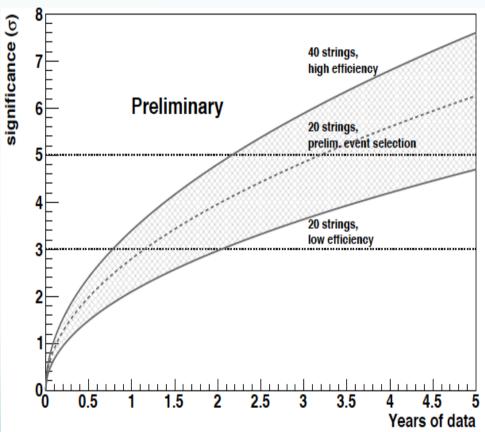
$$S=4.5\sigma$$
 (f=5%)

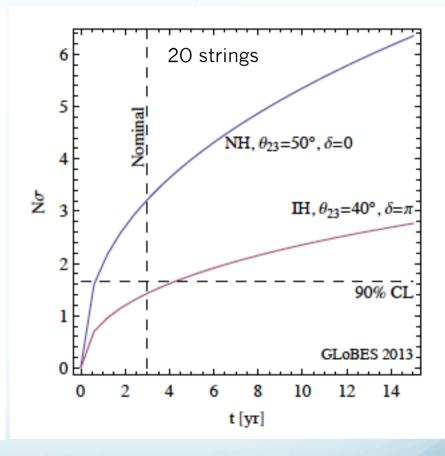

$$S=3.0\sigma$$
 (f=10%)


In 5 years




Preliminary performances





PINGU sensitivities

3 different studies performed. Sys uncertainties include norm (30%), spectral index (±0.05), energy scale (10%), zenith bias (10%) Realistic energy and direction resolutions

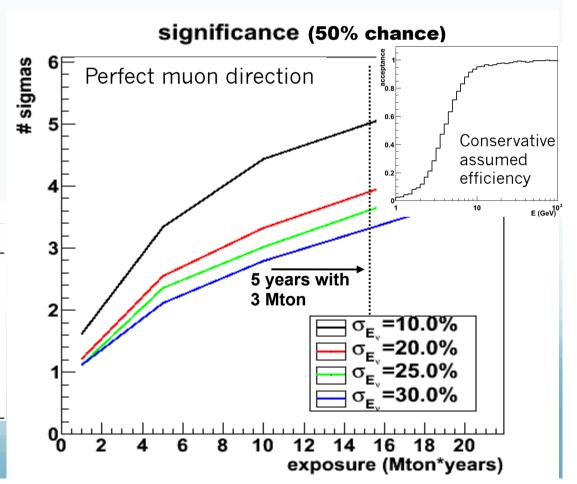
2 extreme cases of true param values. $\Delta E/E = 25\%$ and $\Delta \theta/\theta = 0.6 \sqrt{m_p/E}$ 5% Flavor mis-id Method : $\Delta \chi^2$

(optimistic 🕮 E. Cuifolli et al 1305.5150)

ORCA sensitivity

all results are preliminary

To optimally distinguish between IH and NH: likelihood ratio test with nuisance parameters → deal with degeneracies by fitting!


$$\Delta \log(L^{\max}) = \sum_{\text{bins}} \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$$

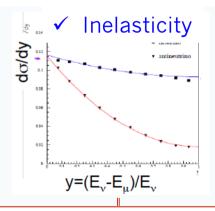
$$\hat{\theta}^{\rm H} = \begin{array}{l} {}^{\rm maximum-likelihood\ estimates\ for\ the\ \Delta m^2's\ and\ angles\ using\ both\ data\ and\ constraints\ from\ global\ fit.} \\ {}^{\rm nb:\ constraints\ are\ different\ for\ H=IH\ and\ H=NH} \end{array}$$

Uncertainty on the mixing parameters as a function of the exposure

Eres = 25%, 1-100 GeV

Mton x yr	$\sigma(\Delta m^2_{large}) (eV^2)$	$\sigma(\theta_{23})$ (°)	$\sigma(\theta_{13})$ (°)
0(now)	8.0e-5	1.3	0.45
1	4.3e-05	0.61	0.42
5	2.3e-05	0.32	0.44
10	1.8e-05	0.22	0.39
20	1.4e-05	0.16	0.39
30	1.2e-05	0.13	0.37

Further on-going studies


Improvements

✓ Shower reconstruction

Should help to evaluate neutrino energy.

Study of intrinsic energy variations > Current limitation from physics (vertex, prop,...) not detector

Try to separate track-like (\bar{v}) to shower-like events (v)

"With the inelasticity, the total significance of establishing mass hierarchy may increase by (20 - 50)%"

Ribordy & Smirnov arXiv:1303.0758v1

Deteriorations

✓ Flavor misidentification

Attempts to study response to \mathbf{v}_{e}

Development of muon tag to then subtract bkg from \mathbf{v}_{x} NC, \mathbf{v}_{e} , \mathbf{v}_{τ}

✓ Atmospheric muons

Preliminary studies of reconstructed vertex position encouraging → out of instr. volume

Veto from IceCube/Deepcore

Studies of systematics

D. Franco et al, JHEP 04 (2013) 008

Method: extended unbinned log-likelihood ratio

Earth Model

Almost negligible impact

Atmospheric neutrinos flux

- Shape ———
- Normalization

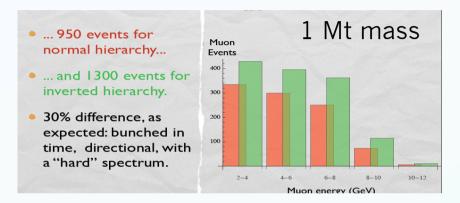
Moderate impact

Large impact but normalization from data

PMNS uncertainties

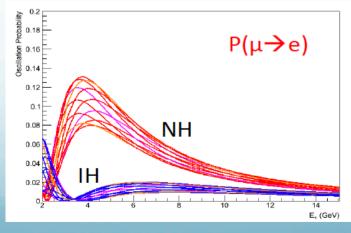
Negligible impact varying combinations of $\{\theta_{12}, \Delta m^2_{21}\}$ (± 1σ)

Large impact varying combinations of $\{\theta_{13}, \theta_{23}, \Delta m^2_{31}\}$ ($\pm 1\sigma$)


Small impact varying CP phase

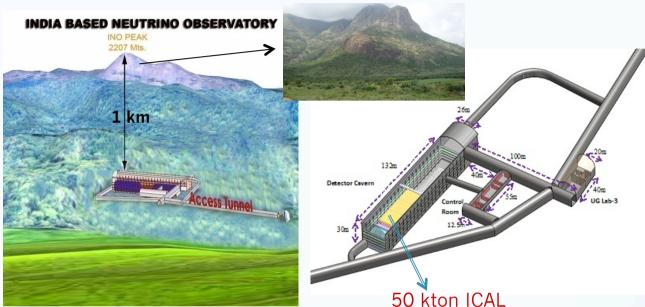
Several other studies point to the same conclusions...

Neutrino beam to PINGU/ORCA?


• Muon counting experiment - Optimum 6-8 GeV 6000-8000 km but beam inclination Lujan-Peschard et al, Eur. Phys. J. C (2013) 73:2439; Tang & Winter, JHEP 1202 (2012) 028

	Fermilab	CERN	J-Parc
South-Pole	11600 km	11800 km	11400 km
Sicily	7800 km	1200 km	9100 km
Baikal Lake	8700 km	6300 km	3300 km

- \rightarrow 9 σ separation on purely statistical ground in one year
- Electron counting experiment Protvino-ORCA L=2588 km, beam inclined by 11.7°
 - ☐ J. Brunner, arXiv:1304.6230

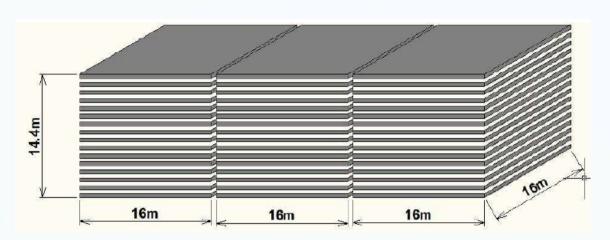


 10^{21} pot -- 3 years 7 σ stat. separation 3 σ with 3-4% sys

No need for energy reconstruction

INO: India-based Neutrino Observatory

- 115 km west of Madurai (internat. airport)
- Pottipuram Village, Theni District, Tamil Nadu State
- 1.9 km access tunnel
- Indian collab (~20 institutes) + Hawaii Univ (USA)
- Several other experiments when operational ($\beta\beta0\nu$, DM)


CERN-INO: ~7300 km JPARC-INO: ~6500 km RAL-INO:~7600 magic baseline ~ 7500 km FNAL-INO: second magic

(room for additional 50kton)

Current Status:

- Fencing work started for facilities near portal and Madurai Center for HE Physics
- Waiting for full project approval by Indian Government

The INO-ICAL detector

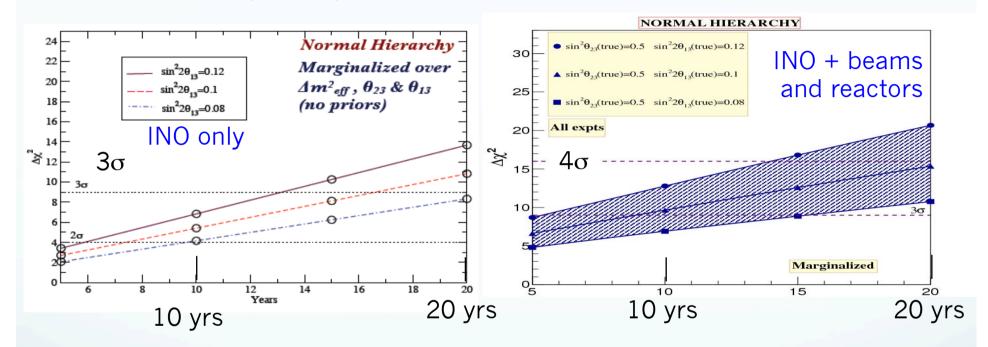
- 50Kton Fe-RPC Detectors
- # of layers = 140
- √ Fe thickness = 5.6 cm
- ✓ Magnetic Field ~ 1.3T
- √ # of RPCs ~ 27K
- √ # of channels ~ 3.6M

[NB: Slightly different numbers exist]

Construction of RPC Pickup strips 2 mm thick spacer Glass plates Resistive coating on the outer surfaces of glass

2m x 2m glass RPC test stand

Cosmic –ray tracks are seen...


Current Status:

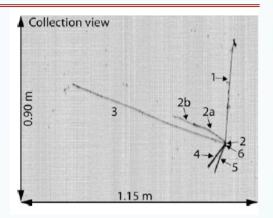
- RPCs: help from Industry expected
- Electronics: ASIC (2nd batch being tested)
 and DAQ under development

 Magnet: Prototype running at VECC Engineering module (800 ton) will be constructed by 2014.

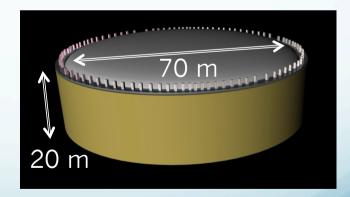
Mass Hierarchy Discrimination

Expected performances are a bit worse for IH

Further improvements expected by adding hadron events


arXiv:1306.1423v1

INO + Other experiments


- Ghosh, Thakore & Choubey, arXiv:1212.1305
- Blennow & Schwetz, JHEP 1208 (2012) 058, Erratum-ibid. 1211 (2012) 098

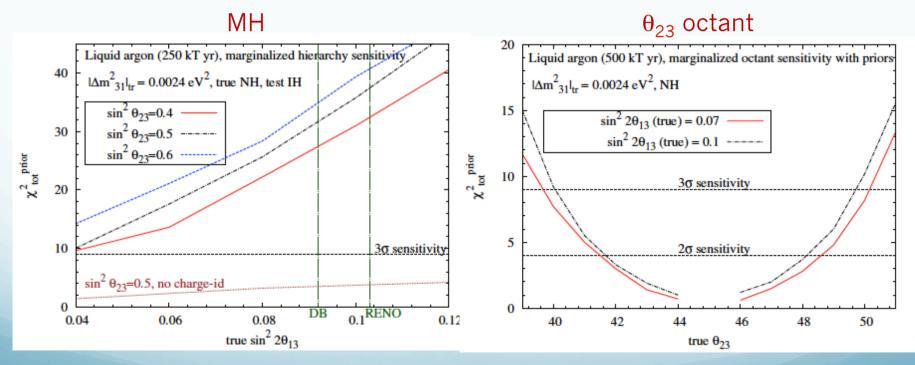
The Liquid Ar TPC detectors

- First achievements with ICARUS (760 tons at LNGS)
 → Proof of technology.
- Excellent particle identification with low threshold (MeV)

- Proposed detectors (LBNO/E): staged approach up to 100 kton
 - Sensitive to muons and electrons
 - Hadronic component can me measured
- Atmospheric neutrino studies
 - Tau neutrino appearance
 - Discrimination between $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{s}$ from upward/downward asymmetry
 - A. Stahl et al, LBNO, SPSC-EOI-007 (2012)

S. Murphy, Id 33 (09/12/13)M. Buizza Avanzini, Id 43 (09/12/13)

Magnetized LAr-TPC?

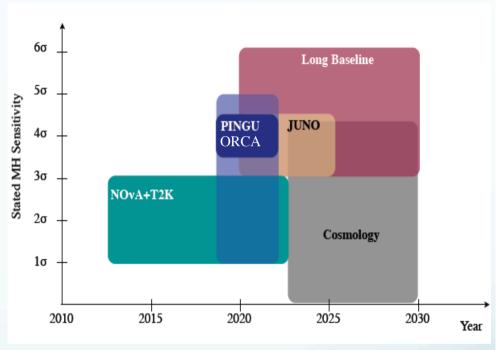

Sensitivity to mass hierarchy require charge identification to compensate low mass

Magnetization?

U. Barger et al, Phys.Rev.Lett.109:091801,2012

100% CID for muons and 20% for electrons in the energy range 1-5 GeV

$$\sigma_{E_e} = \sigma_{E_{\mu}} = \text{0.01}; \quad \sigma_{E_{had}} = \sqrt{(0.15)^2/E_{had} + (0.03)^2} \qquad \quad \sigma_{\theta_{\nu e}} = 2.8^\circ; \quad \sigma_{\theta_{\nu \mu}} = 3.2^\circ$$


~5 σ with 250 kton.year exposure

~3 σ with 250 kton.year exposure with $\sin^2\theta_{23}$ in [0.4; 0.6]

(Results shown for assumed NH)

Summary

- Atmospheric Neutrinos have still a major role to play for precision measurements and determination of unknown parameters such as the mass hierarchy.
- Proposed detectors include Iron Calorimeter, Liquid Argon and Cherenkov detectors. None of these projects being firmly funded.
- Low energy (GeV) extensions of Neutrino Telescopes may be faster and cheaper than other alternatives...
- ...but challenging, as systematics must be carefully controlled. Key parameters are the size of the detector as well as the energy and angle resolutions.
- Preliminary ORCA/PINGU sensitivities are quite promising. Collaborative work on-going.

R.N. Cahn et al, arXiv:1307.5487

Synergies/Combination with LBL/ reactor experiments may provide the first high significance MH determination...