

13th International Conference on Topics in Astroparticle and Underground Physics

Asilomar, California USA, September 8-13, 2013

Outline

- Introduction: The neutrino-driven explosion mechanism
- Status of self-consistent models in two dimensions
- The question of dimensions: How does 3D differ from 2D?
- Observational consequences of neutrino-driven explosions

Apologies to experts!

This talk is a brief, general overview for a broad conference audience but cannot account for individual contributions by all groups.

For more special and detailed presentations, see talks by Irene Tamborra (Wed.) and Kei Kotake, Ernazar Abdikamalov (Thu.)

Stellar Core Collapse and Explosion

Evolved massive star prior to its collapse:

Star develops onion-shell structure in sequence of nuclear burning stages over millions of years

Evolved massive star prior to its collapse:

Star develops onion-shell structure in sequence of nuclear burning stages over millions of years

Gravitational instability of the stellar core:

Stellar iron core begins collapse when it reaches a mass near the critical Chandrasekhar mass limit

Collapse

becomes
dynamical
because of
electron captures
and photodisintegration of
Fe-group nuclei

Neutrinos & SN Explosion Mechanism

Paradigm: Explosions by the neutrino-heating mechanism, supported by hydrodynamic instabilities in the postshock layer

- "Neutrino-heating mechanism": Neutrinos `revive' stalled shock by energy deposition (Colgate & White 1966, Wilson 1982, Bethe & Wilson 1985);
- Convective processes & hydrodynamic instabilities support the heating mechanism

(Herant et al. 1992, 1994; Burrows et al. 1995, Janka & Müller 1994, 1996; Fryer & Warren 2002, 2004; Blondin et al. 2003; Blondin & Mezzacappa 2007, Scheck et al. 2004,06,08, Iwakami et al. 2008, 2009, Ohnishi et al. 2006).

But: Is neutrino heating strong enough to initiate the explosion against the ram pressure of the collapsing stellar shells?

Most sophisticated, self-consistent numerical simulations of the explosion mechanism in 2D and 3D are necessary!

Predictions of Signals from SN Core

$$\frac{\partial\sqrt{\gamma}\rho W}{\partial t} + \frac{\partial\sqrt{-g}\rho W\hat{v}^{i}}{\partial x^{i}} = 0, \qquad (2.5)$$

$$\frac{\partial\sqrt{\gamma}\rho hW^{2}v_{j}}{\partial t} + \frac{\partial\sqrt{-g}\left(\rho hW^{2}v_{j}\hat{v}^{i} + \delta_{j}^{i}P\right)}{\partial x^{i}} = \frac{1}{2}\sqrt{-g}T^{\mu\nu}\frac{\partial g_{\mu\nu}}{\partial x^{j}} + \left(\frac{\partial\sqrt{\gamma}S_{j}}{\partial t}\right)_{C}, \qquad (2.6)$$

$$\frac{\partial\sqrt{\gamma}\tau}{\partial t} + \frac{\partial\sqrt{-g}\left(\tau\hat{v}^{i} + Pv^{i}\right)}{\partial x^{i}} = \alpha\sqrt{-g}\left(T^{\mu 0}\frac{\partial\ln\alpha}{\partial x^{\mu}} - T^{\mu\nu}\Gamma_{\mu\nu}^{0}\right) + \left(\frac{\partial\sqrt{\gamma}\tau}{\partial t}\right)_{C}.$$

$$\frac{\partial\sqrt{\gamma}\rho WY_{e}}{\partial t} + \frac{\partial\sqrt{-g}\rho WY_{e}\hat{v}^{i}}{\partial x^{i}} = \left(\frac{\partial\sqrt{\gamma}\rho WY_{e}}}{\partial t}\right)_{C}, \qquad (2.8)$$

$$\frac{\partial\sqrt{\gamma}\rho WX_{k}}{\partial t} + \frac{\partial\sqrt{-g}\rho WX_{k}\hat{v}^{i}}{\partial x^{i}} = 0. \qquad (2.9)$$

General-Relativistic 2D Supernova Models of the Garching Group

(Müller B., PhD Thesis (2009); Müller et al., ApJS, (2010))

GR hydrodynamics (CoCoNuT)

CFC metric equations

$$\hat{\Delta}\Phi = -2\pi\phi^5 \left(E + \frac{K_{ij}K^{ij}}{16\pi}\right), \qquad (2.10)$$

$$\hat{\Delta}(\alpha\Phi) = 2\pi\alpha\phi^5 \left(E + 2S + \frac{7K_{ij}K^{ij}}{16\pi}\right), \qquad (2.11)$$

$$\hat{\Delta}\beta^{i} = 16\pi\alpha\phi^{4}S^{i} + 2\phi^{10}K^{ij}\hat{\nabla}_{j}\left(\frac{\alpha}{\Phi^{6}}\right) - \frac{1}{3}\hat{\nabla}^{i}\hat{\nabla}_{j}\beta^{j}, \qquad (2.12)$$

$$\frac{\partial W\left(\hat{J}+v_{r}\hat{H}\right)}{\partial t} + \frac{\partial}{\partial r}\left[\left(W\frac{\alpha}{\phi^{2}} - \beta_{r}v_{r}\right)\hat{H} + \left(Wv_{r}\frac{\alpha}{\phi^{2}} - \beta_{r}\right)\hat{J}\right] - \qquad (2.28)$$

$$\frac{\partial}{\partial \varepsilon}\left\{W\varepsilon\hat{J}\left[\frac{1}{r}\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right) + 2\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right)\frac{\partial\ln\phi}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right] + W\varepsilon\hat{H}\left[v_{r}\left(\frac{\partial\beta_{r}\phi^{2}}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right) - \frac{\alpha}{\phi^{2}}\frac{\partial\ln\alpha W}{\partial r} + \alpha W^{2}\left(\beta_{r}\frac{\partial v_{r}}{\partial r} - \frac{\partial v_{r}}{\partial t}\right)\right] - \varepsilon\hat{K}\left[\frac{\beta_{r}W}{r} - \frac{\partial\beta_{r}W}{\partial r} + Wv_{r}r\frac{\partial}{\partial r}\left(\frac{\alpha}{r\phi^{2}}\right) + W^{3}\left(\frac{\alpha}{\phi^{2}}\frac{\partial v_{r}}{\partial r} + v_{r}\frac{\partial v_{r}}{\partial t}\right)\right]\right\} - W\hat{J}\left[\frac{1}{r}\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right) + 2\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right)\frac{\partial\ln\phi}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right] - W\hat{H}\left[v_{r}\left(\frac{\partial\beta_{r}\phi^{2}}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right) - \frac{\alpha}{\phi^{2}}\frac{\partial\ln\alpha W}{\partial r} + \alpha W^{2}\left(\beta_{r}\frac{\partial v_{r}}{\partial r} - \frac{\partial v_{r}}{\partial t}\right)\right] + \hat{K}\left[\frac{\beta_{r}W}{r} - \frac{\partial\beta_{r}W}{\partial r} + Wv_{r}r\frac{\partial}{\partial r}\left(\frac{\alpha}{r\phi^{2}}\right) + W^{3}\left(\frac{\alpha}{\phi^{2}}\frac{\partial v_{r}}{\partial r} + v_{r}\frac{\partial v_{r}}{\partial t}\right)\right] = \alpha\hat{C}^{(0)},$$

Neutrino transport (VERTEX)

$$\frac{\partial W\left(\hat{H}+v_{r}\hat{K}\right)}{\partial t} + \frac{\partial}{\partial r}\left[\left(W\frac{\alpha}{\phi^{2}} - \beta_{r}v_{r}\right)\hat{K} + \left(Wv_{r}\frac{\alpha}{\phi^{2}} - \beta_{r}\right)\hat{H}\right] - \qquad (2.29)$$

$$\frac{\partial}{\partial \varepsilon}\left\{W\varepsilon\hat{H}\left[\frac{1}{r}\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right) + 2\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right)\frac{\partial\ln\phi}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right] + W\varepsilon\hat{K}\left[v_{r}\left(\frac{\partial\beta_{r}\phi^{2}}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right) - \frac{\alpha}{\phi^{2}}\frac{\partial\ln\alpha W}{\partial r} + \alpha W^{2}\left(\beta_{r}\frac{\partial v_{r}}{\partial r} - \frac{\partial v_{r}}{\partial t}\right)\right] - \varepsilon\hat{L}\left[\frac{\beta_{r}W}{r} - \frac{\partial\beta_{r}W}{\partial r} + Wv_{r}r\frac{\partial}{\partial r}\left(\frac{\alpha}{r\phi^{2}}\right) + W^{3}\left(\frac{\alpha}{\phi^{2}}\frac{\partial v_{r}}{\partial r} + v_{r}\frac{\partial v_{r}}{\partial t}\right)\right]\right\} + \left(\hat{J} - \hat{K}\right)\left[v_{r}\left(\frac{\beta_{r}}{r} - \frac{\partial\beta_{r}}{\partial r}\right) + \frac{\partial}{\partial r}\left(\frac{W\alpha}{\phi^{2}}\right) - \frac{W\alpha}{r\phi^{2}} + W^{3}\left(\frac{\partial v_{r}}{\partial r} - \beta_{r}\frac{\partial v_{r}}{\partial r}\right)\right] + \left(\hat{H} - \hat{L}\right)\left[\frac{W^{3}\alpha}{\phi^{2}}\frac{\partial v_{r}}{\partial r} + \frac{\beta W}{r} - \frac{\partial\beta W}{\partial r} - Wv_{r}r\frac{\partial}{\partial r}\left(\frac{\alpha}{r\phi^{2}}\right) + \frac{\partial W}{\partial t}\right] - W\hat{H}\left[\frac{1}{r}\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right) + 2\left(\beta_{r} - \frac{\alpha v_{r}}{\phi^{2}}\right)\frac{\partial\ln\phi}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right] - W\hat{K}\left[v_{r}\left(\frac{\partial\beta_{r}\phi^{2}}{\partial r} - 2\frac{\partial\ln\phi}{\partial t}\right) - \frac{\alpha}{\phi^{2}}\frac{\partial\ln\alpha W}{\partial r} + \alpha W^{2}\left(\beta_{r}\frac{\partial v_{r}}{\partial r} - \frac{\partial v_{r}}{\partial t}\right)\right] + \hat{L}\left[\frac{\beta_{r}W}{r} - \frac{\partial\beta_{r}W}{\partial r} + Wv_{r}r\frac{\partial}{\partial r}\left(\frac{\alpha}{r\phi^{2}}\right) + W^{3}\left(\frac{\alpha}{\phi^{2}}\frac{\partial v_{r}}{\partial r} + v_{r}\frac{\partial v_{r}}{\partial t}\right)\right] = \alpha\hat{C}^{(1)}.$$

Neutrino Reactions in Supernovae

Beta processes:

Neutrino scattering:

Thermal pair processes:

Neutrino-neutrino reactions:

•
$$e^- + p \rightleftharpoons n + \nu_e$$

•
$$e^+ + n \rightleftharpoons p + \bar{\nu}_e$$

•
$$e^- + A \rightleftharpoons \nu_e + A^*$$

$$\bullet$$
 $\nu + n, p \rightleftharpoons \nu + n, p$

$$\bullet \quad \nu + A \rightleftharpoons \nu + A$$

•
$$v + e^{\pm} \rightleftharpoons v + e^{\pm}$$

•
$$N + N \rightleftharpoons N + N + \nu + \bar{\nu}$$

$$\bullet e^+ + e^- \rightleftharpoons \nu + \bar{\nu}$$

•
$$v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$$

 $(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$

•
$$v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$$

The Curse and Challenge of the Dimensions

Boltzmann equation determines neutrino distribution function in 6D phase space and time $f(r, \theta, \phi, \Theta, \Phi, \epsilon, t)$

Integration over 3D momentum space yields source terms for hydrodynamics

$$Q(r,\theta,\phi,t)$$
 , $\dot{Y}_e(r,\theta,\phi,t)$

- **3D** hydro + **6D** direct discretization of Boltzmann Eq. (code development by Sumiyoshi & Yamada '12)
- **3D** hydro + two-moment closure of Boltzmann Eq. (next feasible step to full 3D; O. Just et al. 2013)
- **3D** hydro + "ray-by-ray-plus" variable Eddington factor method (method used at MPA/Garching)
- **2D** hydro + "ray-by-ray-plus" variable Eddington factor method (method used at MPA/Garching)

Θ

- Required resources
- \geq 10–100 PFlops/s (sustained!)
- \geq 1–10 Pflops/s, TBytes
- \geq 0.1–1 PFlops/s, Tbytes
- $\geq 0.1-1$ Tflops/s, ≤ 1 TByte

SN Simulations:

"Electron-capture supernovae" or "ONeMg core supernovae"

Kitaura et al., A&A 450 (2006) 345; Janka et al., A&A 485 (2008) 199

Convection is not necessary for launching explosion but occurs in NS and in neutrino-heating layer

$M_{star} \sim 8...10 M_{sun}$

- No prompt explosion!
- Mass ejection by "neutrino-driven wind" (like Mayle & Wilson 1988 and similar to AIC of WDs; see Woosley & Baron 1992, Fryer et al. 1999; Dessart et al. 2006)
- Explosion develops in similar way for soft nuclear EoS (i.e. compact PNS) and stiff EoS (less compact PNS)

2D SN Simulations: $M_{star} \sim 8...10 M_{sun}$

Convection leads to slight increase of explosion energy, causes explosion asymmetries, and ejects n-rich matter!

t = 0.097 s after core bounce

t = 0.144 s after core bounce

Janka et al. (2008), Wanajo et al. (2011), Groote et al. (in preparation)

t = 0.262 s after core bounce

Explosion properties:

 $E_{exp} \sim 10^{50} \text{ erg} = 0.1 \text{ bethe}$ $M_{Ni} \sim 0.003 M_{sun}$

Low explosion energy and ejecta composition (little Ni, C, O) of ONeMg core explosion are compatible with CRAB (SN1054)

(Nomoto et al., Nature, 1982; Hillebrandt, A&A, 1982)

Might also explain other lowluminosity supernovae (e.g. SN1997D, 2008S, 2008HA)

2D SN Simulations: $M_{star} \sim 8...10 M_{sun}$

Relativistic 2D CCSN Explosion Models

Violent, quasi-periodic, large-amplitude shock oscillations (by SASI) can lead to runaway and onset of explosion.

They also produce variations of neutrino emission and gravitational-wave signal.

Relativistic 2D CCSN Explosion Models

SASI: Standing Accretion Shock Instability

Nonradial, oscillatory shockdeformation modes (mainly I = 1, 2) caused by an amplifying cycle of advective-acoustic perturbations.

Blondin et al., ApJ (2003), Foglizzo (2002), Foglizzo et al. (2006,2007)

Fig. 1. Schematic view of the advective-acoustic cycle between the shock at $R_{\rm s}$ (thick solid line) and the coupling radius, $R_{\rm c}$ (thick dashed line), in the linear regime, shown for the case where the oscillation period of the shock ($\tau_{\rm osc}$) equals the cycle duration, $\tau_{\rm aac}$. Flow lines carrying vorticity perturbations downwards are drawn as solid lines, and the pressure feedback corresponds to dotted lines with arrows. In the gray shaded area around $R_{\rm c}$ the flow is decelerated strongly.

$$\tau_{\rm aac}^{\nabla} \equiv \int_{R_{\nabla}}^{R_{\rm sh}} \frac{\mathrm{d}r}{|v|} + \int_{R_{\nabla}}^{R_{\rm sh}} \frac{\mathrm{d}r}{c - |v|}$$

Scheck et al., A&A 447, 931 (2008)

Growing set of 2D CCSN Explosion Models

Mass accretion rate

Average shock radius

Progenitor models: Woosley et al. RMP (2002)

Growing set of 2D CCSN Explosion Models

Mass accretion rate

Average shock radius

Progenitor models: Woosley et al. RMP (2002)

2D SN Explosion Models

- Basic confirmation of the neutrino-driven mechanism
- Confirmation of reduction of the critical neutrino luminosity for explosions in self-consistent 2D treatments compared to 1D

Explosions in 2D simulations were also obtained recently by Suwa et al. (2010, 2012), Takiwaki et al. (2013) [—> K. Kotake's talk on Thursday afternoon] and Bruenn et al. (ApJL, 2013) Important quantitative differences between all models.

Many numerical aspects, in particular also neutrino transport treatment, are different; code comparisons are needed!

Challenge and Goal: 3D

- 2D explosions seem to be "marginal", at least for some progenitor models and in some of the most sophisticated simulations.
- Nature is three dimensional, but 2D models impose the constraint of axisymmetry (—> toroidal structures).
- Turbulent cascade in 3D transports energy from large to small scales, which is opposite to 2D.
- Does SASI also occur in 3D?
- 3D models are needed to confirm explosion mechanism suggested by 2D simulations!

Computing Requirements for 2D & 3D Supernova Modeling

Time-dependent simulations: $t \sim 1$ second, $\sim 10^6$ time steps!

CPU-time requirements for one model run:

★ In 2D with 600 radial zones, 1 degree lateral resolution:

 $\sim 3*10^{18}$ Flops, need $\sim 10^6$ processor-core hours.

★ In 3D with 600 radial zones, 1.5 degrees angular resolution:

~ $3*10^{20}$ Flops, need ~ 10^8 processor-core hours.

John von Neumann Institut für Computing

3D Supernova Simulations

EU PRACE and GAUSS Centre grants of ~360 million core hours allow us to do the first 3D simulations on 16.000 cores.

TGCC Curie

SuperMUC Petascale System

3D Core-Collapse Models

27 M_{sun} progenitor (WHW 2002)

27 M_{sun} SN model with neutrino transport develops spiral SASI as seen in idealized, adiabatic simulations by Blondin & Mezzacappa (Nature 2007)

F. Hanke et al., arXiv:1303.6269

3D Explosions?

3D Core-Collapse Models

27 M_{sun} progenitor (WHW 2002)

Shock position (max., min., avg.)

Florian Hanke, PhD project

Summary I

- 2D models with relativistic effects (2D GR and approximate GR) yield explosions for "soft" EoSs, but explosion energy may tend to be low.
- Considerable quantitative differences compared to Bruenn et al. (arXiv:1212.1747) demand detailed comparison.
- 3D modeling has only begun. No clear picture of 3D effects yet.
 But SASI can dominate (certain phases) also in 3D models!
- 3D models do not yet show explosions, but still need higher resolution for convergence.
- Progenitors are 1D, but shell structure and initial asymmetries may depend on 3D effects! How important is slow rotation for SASI growth?
- Missing physics ?????

Some Observable Consequences of Neutrinodriven Explosions

Observational consequences and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

Neutrino signals (characteristic modulations)
 (Marek et al. 2009; Müller E. et al. 2012; Lund et al. 2010, 2012; Tamborra et al. 2013)

Gravitational-wave signals

(Marek et al. 2009; Müller E. et al. 2012; Müller B. et al. 2012)

- Neutron star kicks (Scheck et al. 2004, 2006; Wongwathanat et al. 2010, 2012)
- Asymmetric mass ejection & large-scale radial mixing

 (Kifonidis et al. 2005, Hammer er al. 2010, Wongwathanat et al., in prep.)
- Progenitor explosion remnant connection (Ugliano et al. 2012)
- Lightcurve shape, spectral features (electromagnetic emission)
- Nucleosynthesis (e.g., Pruet et al. 2006, Wanajo et al. 2011,2013)

Detecting Core-Collapse SN Signals

Superkamiokande

IceCube

3D Core-Collapse Models: Neutrino Signals

11.2, 20, 27 M_{sun} progenitors (WHW 2002)

SASI produces modulations of neutrino emission and gravitational-wave signal.

—> I. Tamborra's talk in the afternoon!

(Tamborra et al., PRL, in press; arXiv:1307.7936)

Gravitational Waves for 2D SN Explosions

$$h = \frac{1}{8} \sqrt{\frac{15}{\pi}} \sin^2 \Theta \frac{A_{20}^{\rm E2}}{R} \qquad \qquad h_{\nu} = \frac{2G}{c^4 R} \int_0^t L_{\nu}(t') \alpha_{\nu}(t') \, dt' \\ \alpha_{\nu} = \frac{1}{L_{\nu}} \int \pi \sin \theta \, (2|\cos \theta| - 1) \, \frac{dL_{\nu}}{d\Omega} d\Omega$$

Gravitational Waves for 2D SN Explosions

GW amplitudes in 2D are considerably larger than in 3D. No template character, in 3D strongly direction dependent.

Gravitational Waves $^{10^{48}}$ for 2D SN Explosions: $^{10^{47}}$ Progenitor Variations $^{10^{46}}$

Neutron Star Recoil by "Gravitational Tug-Boat" Mechanism

(Wongwathanarat, Janka, Müller, ApJL 725 (2010) 106; A&A (2013), arXiv:1210.8148)

Neutron Star Recoil by "Gravitational Tug-Boat" Mechanism

@ t = 1.4 s

@ t = 3.3 s

	$M_{\rm ns}$	$t_{\rm exp}$	$E_{\rm exp}$	$v_{ m ns}$	$a_{ m ns}$	$v_{ m ns}$	$\alpha_{k\nu}$	$v_{ m ns}^{ m long}$	$a_{ m ns}^{ m long}$	$J_{\rm ns,46}$	$\alpha_{ m sk}$	$T_{\rm spin}$
Model	$[M_{\odot}]$	[ms]	[B]	[km/s]	$[km/s^2]$	[km/s]	[°]	71 .11/S]	$[Km_y]^{2}$	$[10^{46} \mathrm{g}\mathrm{cm}^2/\mathrm{s}]$	[°]	[ms]
W15-1	1.37	246	1.12	331	167	2	151	524	44	1.51	117	652
W15-2	1.37	248	1.13	405	133	1	12	575	49	1.56	58	632
W15-3	1.36	250	1.11	267	102	1	1	-	-	1.13	105	864
W15-4	1.38	272	0.94	262	111	4	102	-	-	1.27	43	785
W15-5-lr	1.41	289	0.83	373	165	2	12	-	-	1.63	28	625
W15-6	1.39	272	0.90	437	222	2	136	704	71	0.97	127	1028
W15-7	1.37	258	1.07	215	85	1	81	-	-	0.45	48	2189
W15-8	1.41	289	0.72	336	168	3	160			4.33	104	235
L15-1	1.58	422	1.13	161	69	5	135	227	16	1.89	148	604
L15-2	1.51	382	1.74	78	14	1	150	0		1.04	62	1041
L15-3	1.62	478	0.84	31	27	1	51	-	-	1.55	123	750
L15-4-lr	1.64	502	0.75	199	123	4	120	-	-	1.39	93	846
L15-5	1.66	516	0.62	267	209	3	147	542	106	1.72	65	695
N20-1-lr	1.40	311	1.93	157	42	7	118	-	-	5.30	122	190
N20-2	1.28	276	3.12	101	12	4	159	-	-	7.26	43	127
N20-3	1.38	299	1.98	125	15	5	138			4.42	54	225
N20-4	1.45	334	1.35	98	18	1	98	125	9	2.04	45	512
B15-1	1.24	164	1.25	92	16	1	97	102	1	1.03	155	866
B15-2	1.24	162	1.25	143	37	1	140	-	-	0.12	162	7753
B15-3	1.26	175	1.04	85	19	1	24	99	3	0.44	148	2050

(Wongwathanarat, Janka, Müller, A&A (2013), arXiv:1210.8148)

Neutron Star Recoil by Hydrodynamical "Gravitational Tug-Boat" Mechanism

This mechanism can explain also with observed black hole kick velocities of Galactic BH-binaries, in contrast to kicks by asymmetric neutrino emission:

BH kick velocities are NOT reduced by ratio of NS/BH mass!

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 434, 1355–1361 (2013) Advance Access publication 2013 July 11

doi:10.1093/mnras/stt1106

Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae

Hans-Thomas Janka*

Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

Cosmic CCSN and Star Formation Rates

Horiuchi et al., ApJ 738 (2011) 154

Stellar Compactness and Explosion

Core compactness can be nonmonotonic function of ZAMS mass

Progenitor models: Woosley et al. (RMP 2002)

$$\xi_{2.5} \equiv \frac{M/M_{\odot}}{R(M)/1000 \,\mathrm{km}} \,, \quad \mathrm{mass} \ M = 2.5 \ M_{\odot}$$

(Ugliano, THJ, Marek, Arcones, ApJ 757, 69 (2012))

O'Connor & Ott, ApJ 730:70 (2011)

Remnant Mass Distribution

Model results folded with Salpeter IMF: 23% of all stellar core collapses produce BHs

Baryonic Remnant Mass

(Ugliano, THJ, Marek, Arcones, ApJ 757, 69 (2012))

Observed Remnant Mass Distribution

Our model results reproduce possible gap in the observed distribution of NS and BH masses

Belczynski et al., ApJ (2012)

Summary II

- Neutrino emission of SASI phases shows quasi-periodic modulation that will be easily detectable for a galactic supernova by IceCube or HyperK.
- Supernova core instabilities produce GWs of several 100~1000 Hz.
 Different emission phases from core bounce until after explosion.
 Strong dependence on progenitor and direction of observation.

 No template character.
 - 3D models yield much (~10 times) smaller GW amplitudes than 2D simulations, even when violent, global nonradial shock instability (SASI) develops. Will it be detectable for galactic supernova?
- Neutrino-driven explosions naturally explain pulsar and BH kicks as well as SN explosion asymmetries.
- Failure of neutrino-heating mechanism may explain considerable rates of BH formation and/or weak and faint SNe.

Munich Institute for Astro- and Particle Physics

www.munich-iapp.de

MIAPP Workshops 2014

The Extragalactic Distance Scale
26 May – 20 June 2014
L. Macri, W. Gieren, W. Hillebrandt, R. Kudritzki

Neutrinos in Astro- and Particle Physics

30 June - 25 July 2014

S. Schönert, G. Raffelt, A. Smirnov, T. Lasserre

Challenges, Innovations and Developments in Precision Calculations for the LHC

28 July - 22 Aug. 2014

M. Krämer, S. Dittmaier, N. Glover, G. Heinrich

Cosmology after Planck

25 Aug. - 19 Sept. 2014

N. Aghanim, E. Komatsu, B. Wandelt, J. Weller

Submission of proposals/application for workshop participation: www.munich-iapp.de

Please register NOW!

PARTICLE & NUCLEAR PHYSIC

For concise reviews of most of what I will say, see

ARNPS 62 (2012) 407, arXiv:1206.2503 and PTEP 2012, 01A309, arXiv:1211.1378

Explosion Mechanisms of Core-Collapse Supernovae

Hans-Thomas Janka

Max Planck Institute for Astrophysics, D-85748 Garching, Germany; email: thj@mpa-garching.mpg.de