Solar Neutrinos and the Solar Model

13th International Conference on Topics in Astroparticle and Underground Physics Asilomar, California USA

> Aldo Ianni INFN, Gran Sasso Laboratory

Outline

- Solar Neutrinos and Standard Solar Model
- Observations of Solar Neutrinos
- What we have learned today from solar neutrinos
- What next? (from my point of view)

Solar Neutrinos

The source of energy in the sun (and in H-burning stars) makes neutrinos:

 $4p \rightarrow ^{4}He + 2e^{+} + 2v_{e} + (24.69 + 2.1.022)MeV$

 $\langle E_v \rangle \sim 0.53$ MeV, 2% of total energy produced

Hydrogen burning works through: pp-chain reactions CNO bi-cycle

pp-chain H burning

CNO bi-cycle H burning

Motivations for Solar Neutrino detection

 Solar neutrinos are a <u>unique probe</u> for understanding the interior of the sun and its energy source

The sun can be used to calibrate stellar models

 Probing neutrino propagation (physics) in a high density medium (~100 g/cm³)

<u>Standard Solar Model</u>

The SSM is the framework from which we make predictions on the production of solar neutrinos

Assumptions of the SSM

- Hydrostatic equilibrium
- Spherical symmetry, no rotation, no magnetic field
- Energy generation by H burning
- Homogeneous zero-age Sun:
 - initial metallicity approximately equal to present surface metallicity, corrected for the effect of diffusion

Standard Solar Model

• Solar mass, solar age: fixed

Construct $1M_{sun}$ and match L_{sun} , R_{sun} , $(Z/X)_{surf}$ better than $1/10^5$

Free parameters:

- initial relative mass abundances:
 - X_{in} (Hydrogen), Y_{in}(Helium), Z_{in}(metals)=1-X_{in} - Y_{in}
- Mixing Length Theory parameter for convection

Output of SSM

- Neutrino production region, neutrino fluxes
- Depth of convection zone, R_{cz}
- Surface helium abundance, Y_{surf}
- Profile of X(r), Y(r) and Z(r)
- density and sound speed profiles

Solar Neutrino Spectrum at Earth

Solar Surface Composition

Inferred from photospheric and meteoritic abundances (see F. Villante)

Needed radiative transfer model for solar atmosphere to describe observed spectrum

 Convection has been traditionally described with 1-D semi-empirical photospheric model

A 3D, time-dependent, radiative-hydrodynamical simulation of the outer layers of the convection zone, including the photosphere, has been developed [Asplund et al., 2005]

•Derived elemental abundances, using the 3D model and a demanding selection of spectral lines, are smaller by about a factor of two wrt previous calculations

Solar Chemical Compositions: GS98 vs AGSS09

Element	GS98 log(N _i /N _H) + <i>12</i>	AGSS09 log(N _i /N _H) + 12	GS98/AGSS09 - 1
С	8.52	8.43	0.23
Ν	7.92	7.83	0.23
0	8.83	8.69	0.38
Ne	8.08	7.93	0.41
Mg	7.58	7.53	0.12
Si	7.56	7.51	0.12
S	7.20	7.15	0.12
Fe	7.50	7.45	0.12

Grevesse and Sauval, Space Sci. Rev., 1998 Asplund et al., Ann. Rev. Astrom Astrophys, 2009

1D vs 3D

Test	1D	3D
• Obs. spectrum vs λ	Yes	Yes
Granulation	No	Yes
Widths of lines	Yes*	Yes
Shifts of lines	No	Yes
Asymmetries	Νο	Yes

* With ad-hoc micro- and macro-turbulance

<u>Standard Solar Model neutrino flux</u> predictions

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98*	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Difference (wrt to GS98)
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	1%
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	2%
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	9%
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	18%
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	27%
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	30%
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	38%

*) Remark: GS98 abundances are thought to be wrong Antonelli, Miramonti, Pena-Garay, Serenelli, arXiv:1208.1356

Helioseismology

Solar oscillations, stochastically excited by near-surface convection, provide unique information on solar convection and solar interior.

Helioseismology vs SSM

	BSP11-GS98	BSP11- AGSS09	Helioseismology
Z/X	0.0229	0.0178	_
Y _S	0.2429	0.2319	0.2485 ± 0.0034
R _{CZ} / R _{sun}	0.7124	0.7231	0.713 ± 0.001

The Solar Abundance Problem

Observations of Solar Neutrinos

Solar Neutrino Experiments

Detector	Target mass	Threshold [MeV]	Data taking
Homestake	615 tons C ₂ Cl ₄	0.814	1970-1994
Kamiokande II/III	3ktons H ₂ O	7.5 / 7.0	1983-1995
SAGE	50tons molted metal Ga	0.233	1989-present
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003
Super-Kamiokande [see A. Renshaw]	22.5ktons	5 7 4.5 3.5	1996-2001 2003-2005 2006-2008 2008-present
SNO	1kton D ₂ O	3.5	1999-2006
Borexino [see F. Calaprice/O. Smirnov]	300ton C ₉ H ₁₂	0.2 MeV	2007-present

Solar Neutrino Measurements

Experiment	Sources contributing to data	Data
Homestake	⁷ Be(13.1%)+pep(2.7%)+ CNO(2.4%)+ ⁸ B(81.8%)	2.56±0.16±0.16 SNU
GALLEX/GNO/SAGE	pp(55%)+ ⁷ Be(28.3%)+ pep(2.3%)+ CNO(3.4%)+ ⁸ B(11%)	66.1±3.1 SNU
Kamiokande II/III Super-Kamiokande (I, II, III, IV)	⁸ B	$\Phi_{ve} = (2.80\pm0.38)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.35\pm0.08)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.38\pm0.16)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.39\pm0.06)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.34\pm0.05)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$
SNO	⁸ B [×10 ⁶ cm ⁻² s ⁻¹]	$\phi_{B} = 5.25 \pm 0.16^{+0.11}$ -0.13 $\phi_{NC} = 5.14 \pm 0.16^{+0.13}$ -0.12
Sept 11th, 2013	⁷ Be(0.862MeV) pep ⁸ B(>3MeV)	46±1.5±1.6 cpd/100tons 3.1±0.6±0.3 cpd/100tons 0.22±0.04±0.01 cpd/100tons

Observations vs Predictions: The Solar Neutrino Problem

⁸B Solar Neutrino Spectrum

Detection by neutrino-electron ES

⁷Be Solar Neutrino Measurement in Borexino

Rate(Be_{0.862}) = 46.0 \pm 1.5(sta)^{+1.6}_{-1.5}(sys) cpd/100tons

[Borexino coll., PRL 107, 2010]

MAIN sources of systematic uncertainties	%
Fiducial Volume	+0.5 -1.3
Energy response	2.7
Fit methods	2.0

see F. Calarice / O. Smirnov this meeting

Tagging and removing ¹¹C cosmogenic background

pep Solar Neutrino Measurement in Borexino

Rate(pep) = 3.1 ± 0.6(sta) ± 0.3(sys) cpd/100tons

[Borexino coll., PRL 108, 2012]

MAIN sources of systematic uncertainties	%
Fiducial Volume	+0.6 -1.1
Energy response	4.1
Fit methods	5.7
PSD	5
²¹⁰ Bi shape	+1 -5

SAGE

SAGE continues to perform regular solar neutrino extractions every four weeks with ~50 t of Ga

20.6 year period (1990 – 11.2011): 214 runs, 396 separate counting sets

What we have learned today from solar neutrinos

Flavor change determined by SNO and SK

1,2,3σ contour from SNO CC, ES and NC

 1σ band from SuperK

 3σ contour combined

Using ⁸B solar neutrino measurements

Model independent determination of ϕ_B and $\langle P_{ee} \rangle$ after equalization of SK and SNO response functions [F. Villante et al., PRD 59, 1999. Fogli et al., PRD 63, 2001]

$$\phi_{ES}^{SK} = \phi_B \Big[\big\langle P_{ee} \big\rangle + \rho \Big(1 - \big\langle P_{ee} \big\rangle \Big) \Big] = (2.36 \pm 0.03) \cdot 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

$$\phi_{CC}^{SNO} = \phi_B \big\langle P_{ee} \big\rangle = (1.67 \pm 0.07) \cdot 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

$$\phi_{CC}^{SNO} = \phi_B = (5.25 \pm 0.16^{+0.11}_{-0.13}) \cdot 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

 $P_{ee}^{B} = 0.329^{+0.018}_{-0.017} \approx \sin^{2}\theta_{12}$

$$\phi_{\rm B} = (5.39 \pm 0.18) \times 10^6 \, {\rm cm}^{-2} {\rm s}^{-1}$$

SNO and SuperKamiokande SNO and SuperKamiokande provide:

1. ~ 3% measurement of ⁸B solar neutrinos which can be used as a solar thermometer

2. ~ 6% determination of survival probability (< 1/2) at about 10 MeV

3. Precise determination of the mixing angle θ_{12}

4. Determination of Day-Night effect in SK at 2.7σ [see A. Renshaw this meeting]

⁷Be solar neutrino measurement

Rate measured in Borexino: **R(Be_{0.862}) = 46.0 ± 1.5(stat)** ^{+1.6}_{-1.5}(sys) cpd/100tons [Borexino coll., PRL 107, 2010]

$$\frac{R_{0.862}^{BX}}{R_{0.862}^{SSM}} = f_{Be} \cdot P_{ee}^{Be} + \frac{\left\langle O_{\nu_{\mu}} \right\rangle}{\left\langle O_{\nu_{e}} \right\rangle} f_{Be} \cdot \left(1 - P_{ee}^{Be}\right)$$

$$R_{0.862}^{SSM} = 74 \pm 5 \text{ cpd}/100 \text{ tons}$$

 $R_{0.862}$ ^{SSM-osc} = 42 ± 3 cpd/100tons

pep solar neutrino measurement

Rate measured in Borexino: **R(pep) = 3.1 ± 0.6(stat) ± 0.3(sys) cpd/100tons** [Borexino coll., PRL 108, 2012]

$$\frac{R_{pep}^{BX}}{R_{pep}^{SSM}} = f_{pep} \cdot P_{ee}^{pep} + \frac{\left\langle \sigma_{\nu_{\mu}} \right\rangle}{\left\langle \sigma_{\nu_{e}} \right\rangle} f_{pep} \cdot \left(1 - P_{ee}^{pep}\right)$$

 $R_{pep}^{SSM} = 4.46 \pm 0.05 \text{ cpd}/100 \text{ tons}^{-1}$

 $R_{pep}^{SSM-osc} = 2.73 \pm 0.05 \text{ cpd}/100 \text{ tons}$

$$P_{ee}^{pep} = 0.60 \pm 0.18$$
 (AGSS09)
 $\phi_{Be} = (1.63 \pm 0.35) \times 10^8 \text{ cm}^{-2}\text{s}^{-1}$

Luminosity Constraint

$$\frac{L_{sun}}{4\pi (AU.)^2} = \sum_i a_i \phi_i$$

$$1 = \sum_{i} \left(\frac{a_i}{10 \text{ MeV}} \right) \frac{\phi_i}{8.5243 \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1}}$$

BPS2011-AGSS09:

 $1 = 0.927 f_{pp} + 0.067 f_{Be} + 0.005 f_{CNO} + 0.002 f_{pep} + ...$ $f_{pp} = 1.08 - 0.07 f_{Be} - 0.008 f_{CNO} + ...$

Luminosity from neutrino fluxes

No luminosity constraint

 $\phi_{pp} = (6.14 \pm 0.61) \times 10^{10} \text{ cm}^{-2} \text{s}^{-1}$ $\phi_{CNO} < 6.8 \times 10^8 \text{ cm}^{-2} \text{s}^{-1} (95\% \text{CL})$

$L_v / L_{sun} \approx 1.00 \pm 0.10$

Gonzalez-Garcia et al, JHEP 1005:072,2010: $L_v / L_{sun} = 0.98^{+0.15}_{-0.14}$ Bahcall et al., JHEP 0408 (2004) 016 : $L_v / L_{sun} = 1.4^{+0.2}_{-0.3}$

Solar Neutrino fluxes: observations vs predictions

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux [cm ⁻² s ⁻¹] Data	
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	6.02(1 ^{+0.002} -0.01)×10 ¹⁰	
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.63(1±0.21)×10 ⁸	
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.99(1±0.05)×10 ⁹	
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.33(1±0.026)×10 ⁶	
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	<6.7×10 ⁸	
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	<3.2×10 ⁸	
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	<59×10 ⁶	
CNO	5.24×10 ⁸	3.76×10 ⁸	<6.8×10 ⁸ (2♂) <7.7×10 ⁸ (2♂) [BX]	
p-value Be,B,pep	0.91	0.77		
Sept 11th, 2013 35				

Solar Neutrinos Survival Probability

What next?

- 1. Timescale: < 10 years
- 2. Running detectors: SuperKamiokande, Borexino, SAGE
- 3. Upcoming: SNO+ (see J. Kaspar this meeting)
 - Filling 2014
 - Present planning: solar neutrino physics delayed after double beta decay search
 - Main goals: CNO + low energy ⁸B (even during double beta decay search)

New Physics at up-turn

 Non Standard Interaction can change significantly the shape of the survival probability at the upturn [Y. Minakata and C. Pena-Garay,2010]

• Light sterile neutrinos, $\Delta m^2 \sim 10^{-5} \text{ eV}^2$, $\sin^2 2\theta \sim 10^{-3}$ [P. de Holanda and Y. Smirnov, PRD 83, 2011]]

CN-cycle neutrino measurement: Motivations

1. Independent test of solar metallicity, wrt photospheric determinations

2. Probe a main assumption of SSM: take primordial core metal abundances from today's surface metal abundances

3. Test nuclear physics governing massive main-sequence stars

4. Constraints metal accretion during a pre-main-sequence solar phase [M_{acc} ~ 0.01M_{sun}]
W. Haxton and A. Serenelli, Ap. J., 2008
A. Serenelli, W. Haxton, C. Pena-Garay, Ap. J, 2011

CN-cycle v fluxes to probe C+N

$$\frac{\phi\binom{15}{O}}{\phi\binom{15}{O}^{SSM}} / \left[\frac{\phi\binom{8}{B}}{\phi\binom{8}{B}^{SSM}}\right]^{0.785} = x_C^{0.794} x_N^{0.212} \times \left[L_{sun}^{0.515} Op^{-0.016} A^{0.308} D^{0.172}\right] \\ \times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{1,14}^{0.995}\right] \\ \times \left[x_O^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_S^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003}\right]$$

 ✓ ~ 3% uncertainty from "environmental" parameters but C+N
 ✓ ~ 10% from S-factors

A 10%(7%) ¹⁵O neutrino measurement determines C+N abundance at ~15%(10%) level

Search for CNO neutrinos with a BX-like detector

Improving S/B in a BX-like detector @ SNOIab depth

Determine SSM parameters Neutrino fluxes sensitive to nuclear S-factors and core temperature

- Explore SSM parameters using solar neutrino measurements
 - Bandyopadhyay, Choubey, Goswami and Petcov, PRD 75, 2007
 - Serenelli, Haxton and Pena-Garay, arXiv:1211.6740
- Most unknown parameters:
 - Diffusion (15%), S₃₄ (5.2%), S₁₇ (7.7%)
- Example:
 - S₁₇ at 12% with present measurement
 - S_{17} at ~8% with ⁷Be and S_{34} at 3%

Lesson from Solar Neutrinos

About half a century ago, first solar neutrinos were detected, which led us to the **"Solar Neutrino Problem**".

TODAY: 1. Precise measurement of θ_{12} 2. Oscillations of v_e and matter-vacuum effect 3. pp-chain hydrogen burning evidence 4. Neutrino fluxes: ⁸B, ⁷Be and pep, pp 5. Bound on CNO neutrinos 6. L_v / L_{sun} @ 10% level 7. Solar Abundance Problem

Goals for present and upcoming detectors

- 1. Study Matter-Vacuum transition and day-night effect to test LMA-MSW and probe possible new physics
- 2. Improve bound on CNO in BX
- 3. Improve precision on ⁸B flux in SK
- 4. pp direct measurement in BX
- pp measurement in SAGE (more than 20 years!)
 Take into account new results from D. Frekers et al., PL B 706, 2011 on capture cross section
- Face detection of CNO neutrinos and solve "Solar Abundance Problem".

Feasibility will very much depend on the BACKGROUND ISSUE (see F. Calaprice this meeting)

Solar Neutrino Search has more to give

Acknowledgements

To TAUP organizers for inviting me

To Y. Suzuki for information on SuperKamiokande

To V. Gavrin for information on SAGE

To M. Chen for information on SNO+

To A. Serenelli, C. Pena-Garay, F. Villante, F. Vissani for comments and suggetions

To Nicolas Grevesse for discussions on solar metal abundances

To All my Colleagues in Borexino

To the speakers of parallel session on low energy neutrinos reporting on Borexino, SuperK, SNO+ and SSM

N+O vs⁸B

Detecting Solar Neutrinos

- Electron capture: $v_e + (A,Z-1) \rightarrow (A,Z) + e^{-10^{-42}}$ ($\sigma \sim 10^{-42}$ cm²)
- Elastic Scattering: $v_x + e^- \rightarrow v_x + e^-$ ($\sigma \sim 10^{-44} \text{cm}^2$)
- $v_e + d \rightarrow e^- + p + p (E_v \ge 1.44 \text{ MeV})$ ($\sigma \sim 10^{-42} \text{cm}^2$) • $v_x + d \rightarrow v_x + p + n (E_v \ge 2.74 \text{ MeV})$ • pure NC interaction

Data reduction in Borexino

pep vs CNO rates in Borexino

CNO neutrino measurements

Degeneragy in the energy spectrum between ²¹⁰Bi and CNO with the addition of ¹¹C background makes this measurement very challenging

One possibility is offered by trying to constrain ²¹⁰Bi rate using the ²¹⁰Po tagging (Villante et al. , Phys. Lett. B 701, 2011).

Background in Borexino

²¹⁴ Bi ²¹⁴ Po	²¹² Bi ²¹² Po	²¹⁰ Po	²¹⁰ Bi	⁸⁵ Kr
(5.4±1.1)×	<1.2×10 ⁻¹⁸	~200 cpd/	20±5	~ 0 cpd/
10 ⁻¹⁹ g/g	g/g (95% CL)	100tons	cpd/	100tons
(1.6±0.6)×			100tons	
10 ⁻¹⁹ g/g*				

* not including a temperature fluctuation event

Study ¹⁵O flux to determine C+N abundance

$$\phi({}^{15}O) = \phi({}^{15}O)^{SSM} \left[L_{sun}^{5.942} Op^{2.034} A^{1.364} D^{0.382} \right] \times \left[S_{11}^{-2.912} S_{33}^{0.024} S_{34}^{-0.052} S_{1,14}^{1.0} \right] \\ \times \left[x_{C}^{0.815} x_{N}^{0.217} x_{O}^{0.112} x_{Ne}^{0.081} x_{Mg}^{0.069} x_{Si}^{0.150} x_{S}^{0.109} x_{Ar}^{0.028} x_{Fe}^{0.397} \right]$$

~ 20% uncertainty from C+N abundances
 ~ 11% uncertainty from other "environmental" parameters

 \checkmark ~ 8% from S-factors

Strategy from Serenelli, Pena-Garay, Haxton, 2012: use well-measured ⁸B flux to remove environmental parameters dependence

Day-Night effect: dependence of asymmetry on Δm^2_{21}

SK-I,II,III,IV Combine Day/Night Asymmetry

Direct evidence of matter effects. In SK evidence at 2.6σ

Global Analysis of Solar Neutrino Data

In the framework of neutrino oscillations one defines:

 $\chi^2_{\rm solar+KL} = \chi^2_{\rm solar}(\Delta m^2_{21}, \, \tan^2 \theta_{12}, \, \sin^2 \theta_{13}) + \chi^2_{\rm KL}(\Delta m^2_{21}, \, \tan^2 \theta_{12}, \, \sin^2 \theta_{13})$

$$\Delta m_{21}^2 = 7.50_{-0.21}^{+0.18} \times 10^{-5} \text{ eV}^2$$

$$\tan^2 \theta_{12} = 0.457_{-0.025}^{+0.038} \left[0.462_{-0.033}^{+0.032} \right]$$

$$\sin^2 \theta_{13} = 0.023_{-0.018}^{-0.014} \left[0.025_{-0.004}^{-0.003} \right]$$

$$\begin{bmatrix} 10^{-3} \\ 10^{-4} \\ \vdots \\ 10^{-5} \\ \vdots \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-1} \\ \tan^2 \theta_{12} \\ 10^{-1} \\ 10^{-8} \\ 10^{-1} \\ 10^{-8} \\ 10^{-1} \\$$

Borexino coll., PL B 707, 2012

1D vs 3D: Averaged line profiles

3D model success

Simulations * PSF(40 cm telescope + seeing)

Topology and convective motions

Swedish 40 cm telescope on La Palma (Scharmer)

25×125×82

253x253x163

CN-cycle neutrino measurement: Strategy

Study feasibility of a CN-neutrino measurement on the basis of recent solar neutrino searches

 W. Haxton, A. Serenelli, Astrop. J, 687, 2008
 A. Serenelli, C. Pena-Garay, W: Haxton, arXiv: 1211.6740