ULTRA HIGH ENERGY COSMIC RAYS

Diego Harari Centro Atómico Bariloche & Instituto Balseiro

Argentina

TAUP – 13 September 2013

Instituto Balseiro

Summary of recent measurements of

ENERGY SPECTRUM COMPOSITION ANISOTROPIES

13th International Conference on Topics in Astroparticle and Underground Physics Asilomar, California USA September 8 - 13

FLUX OF COSMIC RAYS from air-shower experiments Knee Knee 1 particle per m²-year **UHECRS 10⁴** Volcano Grigorov $E^{2.6}F(E) [\text{GeV}^{1.6} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}]$ Ranch JACEE ∇ ∇ MGU Haverah **Tien-Shan** \diamond Park Ankle Tibet07 \bigcirc Sugar \bigcirc Akeno CASA-MIA Yakutsk **HEGRA** Fly's Eye ☆ Agasa Ankle Kascade **1 particle per** Fly's Eye Kascade Grande 2011 \bigcirc km²-year AGASA Δ **HiRes 10**╞ HiRes 1 LHC HiRes 2 \diamond Auger (p-p) **Telescope Array 2011** ☆ Auger 2011 Telescope \bigcirc Array 10¹⁹ **10**²⁰ 10¹⁶ 10¹⁵ **10**¹⁷ 10¹⁸ 10^{13} **10¹⁴** 1 particle per E [eV] From PDG (Stanev, Gaisser-Matthews, Beatty) **km² - century**

<u>3 PIECES OF A PUZZLE</u>

Propagation distance (Mpc)

Interaction with CMB \rightarrow Sources within ~ 100 Mpc Expect flux suppression and anisotropy of light component

GZK EFFECT

(Greisen-Zatsepin-Kuzmin 1966)

PHYSICAL REVIEW LETTERS

Volume 16, Number 17

25 April 1966

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the experiments in preparation will at last observe it to have a cosmologically meaningful termination. Flux suppression confirmed

PRL 100, 101101 (2008) First Observation of the Greisen-Zatsepin-Kuzmin Suppression (High Resolution Fly's Eye Collaboration)

PRL 101, 061101 (2008) Observation of the Suppression of the Flux of Cosmic Rays above 4×10^{19} eV (The Pierre Auger Collaboration)

BUT: is it due to a <u>"cosmologically meaningful</u> <u>termination"?</u> or something else? (such as maximum acceleration) <u>We need more pieces</u> <u>to solve the puzzle</u>...

Argentina Australia Brazil Croatia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Slovenia Spain United Kingdom USA Bolivia* Romania* Vietnam* (*Associated)

HYBRID OBSERVATORIES

Surface detectors "statistical power" ~ 100% duty cycle Fluorescence detectors Complementary view (~13% duty cycle) Hybrid operation: improves precision of energy/angular calibration,

consistency tests, etc.

Extensive atmospheric monitoring and calibration

SD DETECTORS

Telescope Array

Thin scintillators. Main part of signal due to e.m. particles Low sensitivity to muons. Water-Cherenkov detectors. Main part of signal due to muons. Good acceptance to inclined showers.

Complementary measurements

Air Shower Reconstruction

Energy Calibration

Verzi ICRC 2013

Auger energy scale Impact of recent improvements

Absolute fluorescence yield	-8.2%
New opt. eff.	4.3%
Calibr. database update	3.5%
Sub total (FD cal.)	7.8%
Likelihood fit of dE/dX	2.2%
Folding with point. spr. func.	9.4%
Sub total (FD prof. rec.)	11.6%
Invisible energy	4.4%
Total	15.6%

Systematics uncertainties

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile reconstruction)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the energy scale	5%
TOTAL	14%

(Down from 22%)

Auger energy spectrum

Normalizations: Hybrid: 0.94, 750 m array: 1.02, Inclined: 1.05

 $\log_{10}(E/eV)$

Schulz ICRC 2013

Auger energy spectrum

 $\log_{10}(E/eV)$

Astrophysical scenarios

MANY FREE PARAMETERS fits to models sensitive to composition, nearby source distribution, maximum acceleration, source spectral index and evolution, diffusion in magnetic fields, ...

Suppression due to interaction with CMB or to maximum injection energy?

Ankle: transition galactic-extragalactic or e+e- dip from extragalactic protons?

composition and rigidity-dependent maximum acceleration.

Magnetic diffusion may suppress XG-nuclei at low energies

Uniform ; R_{max}=4 EV ; γ=2 ; p,He,N,Si,Fe = 0.33,0.1,0.3,0.17,0.1

Between the Knee and the Ankle (A. Haungs @TAUP2013)

<u>COMPOSITION:</u> LIGHT OR HEAVY?

 $E \qquad air \\ p \bullet \longrightarrow O$ $X_{max} \sim In(E)$

Large fluctuations of X from shower to shower

X_{max} ~ In(E/A)

Smaller fluctuations

ARE SENSITIVE TO COMPOSITION

UPDATED MEASUREMENTS OF X

(J. Bellido @TAUP2013)

Y. Tsunesada ICRC 2013

CAVEAT #1

AUGER and TA-HiRes make different analyses

 X_{max} acceptance bias in data and model MC for HiRes and TA

Fiducial volume cuts: no bias for Auger

Joint work has begun to understand differences

UHECR 2012: working group Auger-TA on composition analysis

HiRes/TA: E. Barcikowski, J. Belz, Y. Tameda, Y. Tsunesada

Yakutsk: S. Knurenko, Y. Egorov Auger: J. Bellido, V. de Souza, M. Unger

Current data in the Northern Hemisphere consistent with a constant light composition cannot definitively exclude a changing composition as suggested by Auger measurements.

ICRC 2013: joint Auger-TA presentation

Simulations indicate TA could distinguish (with more statistics) a pure proton composition from a mixture that fits Auger measurements

NO STRONG INCOMPATIBILITY WITHIN STATISTICS

<u>CAVEAT #2</u> <u>SENSITIVITY TO EXTRAPOLATION OF</u> <u>HADRONIC INTERACTIONS</u>

Composition estimates depend on simulations Uncertainties due to extrapolation of hadronic interactions (muon deficit compared to model predictions)

Dependence on cross sections multiplicity, elasticity

If composition were known → hadronic interactions at ~ 300 TeV

UHECRs ↔ Hadronic Interactions

UHECRs ↔ Hadronic Interactions

UHECRs \leftrightarrow Hadronic Interactions: MUON DEFICIT

Simulations that match FD profile have too low SD signal compared to data Discrepancy grows with zenith angle (so does muon component)

COMPOSITION: BOUNDS ON NEUTRINOS

Neutrinos, unlike hadrons, can induce "young" showers close to the ground

CANDIDATES: 0 \rightarrow **Bounds**

Predictions for cosmogenic neutrinos are sensitive to composition (more for lighter nuclei)

Model	Expected number of events
AGN (Becker)	~ 3.1
Cosmogenic (Ahlers) proton (Fermi-LAT bound)	~ 1.4
Cosmogenic (Kotera) proton & mixed compos.	\sim 0.2 - 0.6
IceCube PeV flux, E^{-2} extrapolation	~ 2.2

(Also Kopper, Mohrmann, Ahlers@TAUP2013)

COMPOSITION: BOUNDS ON PHOTONS

Good photon-hadron discrimination

Slower shower development: larger X_{max}

Predominantly electromagnetic. Smaller curvature radius and longer "risetimes" and steeper lateral distribution

Strong constraints on: Super-Heavy DM & Topological Defect models

GZK photons may be in reach

SEARCH FOR ANISOTROPIES

GZK HORIZON → Nearby (inhomogeneous) sources Expect flux suppression + correlation with LSS if deflections are small (light component)

AUGER: 9/13 correlations in early independent data

 \rightarrow 99%CL anisotropy

Inconclusive evidence with current statistics

TA: 17/42 correlations p=0.014 Compatible with level of correlation measured by Auger

TA: correlation with LSS better fit than isotropy. Some excess near SG plane on 20° scale

I. Tinyakov ICRC 2013

DIPOLE UPPER LIMITS (99%CL)

O. Deligny ICRC 2013

SUMMARY/OUTLOOK

NOTORIUS FLUX SUPPRESSION $E > 4x10^{19}$ eV ESTABLISHED

Compatible with GZK attenuation

but "source exhaustion" is also a possible cause

COMPATIBLE DATA FROM DIFFERENT EXPERIMENTS

Within systematic uncertainties and statistical limitations Ongoing effort to compare and combine results (Energy calibration, composition analyses, anisotropy studies ...)

INTRIGUING COMPOSITION RESULTS ABOVE 10¹⁹eV

Or hint to changes in hadronic interactions? Correlation at small angles unexpected if Z is large What is the fraction of light elements at the highest energies?

THE UHECR PUZLE IS NOT SOLVED Expect more pieces to be added ...

R&D on radio detection Phase I (since Oct. 2010)

Radar

