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Abstract

We present an algorithm for calculating moments in arbitrary dimension to an
arbitrary order of accuracy over regions defined by the intersection of a interface
with a control volume. Such moments arise in finite volume discretizations of PDE
over complex domains. The algorithm, which is adaptive and embarassingly paral-
lel, relies on implicit function representations of surfaces, the divergence theorem,
Taylor expansions, and constrained least squares. These ingredients combine in a
recursion that terminates in 1D root finding and integration of monomomials along
line segments.

We illustrate the algorithm using interfaces derived from image data, digital el-
evation maps, analytic expressions, as well as the operations of constructive solid
geometry applied to of all of the above.
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1 Introduction

This work describes an algorithm for grid generation within the context of embedded
boundary, Cartesian grid methods. These methods use finite volume algorithms to
compute numerical solutions to conservation laws, which are expressed as PDE valid
over irregular domains. [?]. These PDE are defined in terms of a divergence of a flux,
∇ · F as in the following examples:

∇ · β(∇u) = ρ, F (u) = β(∇u) (Elliptic PDE)

∂u

∂t
= ∇ · ρ(∇u), F (u) = ρ(∇u) (Parabolic PDE)

∂u

∂t
+∇ · F (u) = 0, F (u) is given (Hyperbolic PDE)

In this work we restrict our attention to domains, Ω, defined through an implicit
function, φ : RD → R. That is,

Ω = {x : x ∈ R
D, φ(x) < 0} (1)

The Cartesian grid, embedded boundary approach discretizes the PDE on a set of
control volumes, V , formed by intersecting rectangular cells with Ω:

V = {[ih, (i+ u)h] ∩ Ω : i ∈ Z
D} (2)

where u ∈ Z
D and all its components are one and h is the size of the rectangular cells

which are, in this case, cubic.

The integral of the divergence of the vector field, ∇·F , over a control volume, V ∈ V ,
can be transformed using the divergence theorem into an integral over the boundary
of the volume, A = ∂V :

∫

V
∇ · F dV =

∫

A
F · n dA (3)

With these definitions, a finite volume fomulation for control volumes containing
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embedded boundaries can be defined using the divergence theorem:

∫

V
∇ · F dV =

∑

± = +,−

D
∑

d=1

±
∫

Ad

±

F d
± dA +

∫

AEB

F · nEB dA (4)

where Ad± = {x : x ∈ V, xd = (id +
1

2
± 1

2
)h}, AEB = V ∩ ∂Ω, and nEB = ∇φ/|∇φ|.

where n is the normal to A pointing out of V . Equation 4 exhibits the divergence as
a sum of fluxes integrated over faces. The numerical solution will be as accurate as
the approximations to the integrals on the right hand side.

We discretize over the faces using a P th-order Taylor approximations of F and F d
±

about points, denoted xEB ∈ AEB and xd± ∈ Ad±, that approximate the centroids
of the domains of integration. We canalso expand nEB about some point in the cell
(which we take to be the origin of our coordinates). Using these Taylor expansions,
(4) can be rewritten:

∫

V
∇ · F dV =

∑

0≤|p|≤P

1

p!





∑

± = +,−

D
∑

d=1

± (∇pF d
±)

∫

Ad

±

(x− xd±)
p dA

+ ∇pF ·
∑

0≤|r|≤P−|p|

∇rnEB(x0)

r!

∫

AEB

(x− x0)
p+r dA



+O(hD+P ), (5)

where x0 is a point sufficiently near the interface for the Taylor remainder theorem to
hold. Assuming F is discretized on the rectangular grid covered by Ω,∇pF d

± and∇rF

can be approximated to the appropriate order by finite differences. The remaining
information required is in the form of moments, integrals of polynomials computed
over V , Ad±, and AEB. This leads to an O(hp−1) truncation error in approximating
PDE.

We have shown in (5) that numerical solutions to conservation laws on irregular
domains can be computed from moment calculations, finite differences of the flux
functions, and quadrature. In this scheme, moment calculations play the role of grid
generation in other methods for complex geometries such as methods using unstruc-
tured, mapped or multiblock grids: moment calculations summarize the information
from the implicit function that is necessary for the discretization of the PDE. We used
implicit functions to expand the normal in a Taylor series, but we did not require an
explicit representation of the irregular boundary.

In this paper, we describe an algorithm to estimate moments. Two observations under-
lie our work. First, we observe that moment calculations themselves can be expressed
(non-uniquely) as the divergence of a flux and therefore brought into the framework
described above. Secondly, we observe that, for each degree, there is an overdeter-
mined linear system whose unknowns represent all the moments of the given degree.
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Use of this system reduces geometric and numeric complexity while increasing robust-
ness in marginally resolved calculations. In particular, complications arising from the
need to reckon the many different ways an interface can intersect a control volume are
reduced to the problems of one-dimensional root finding and computing least squares
solutions to overdetermined linear systems. In general, the need to work in higher
dimensions or with greater accuracy implies a vast increase in difficulty. However,
the algorithm we describe works in arbitrary dimension to arbitrary accuracy. The
ingredients to our algorithm are implicit functions, the divergence theorem, Taylor
approximations, constrained least squares, and adaptive refinement.

2 Representation of the Interface

We use implicit functions to represent the interface. Image data, digital elevation
maps, and analytic expressions provide important examples of implicit functions.
Constructive solid geometry applied to these examples greatly enlarges the set of pos-
sibilities, helping, for example, to represent man-made interfaces, which frequently are
a combination of numerous simpler interfaces. In section 8, we describe a data struc-
ture that encapsulates a small but sufficient set of point evaluations of the implicit
function and its gradients at several locations within a control volume and a data
structure that holds moments over multiple dimensions. The use of templates and
associative arrays facilitates some recursive aspects of our algorithm that we describe
below. Moments and ratios of moments are subject to obvious constraints: volume
can’t be negative and centroids lie within the convex hull, for example. Specific ap-
plications may require further constraints. Section 3 descibes the formal construction
of an overdetermined linear system, the ingredients of which are the divergence theo-
repm and a Taylor approximation to the vector normal to the interface. The solution
vector estimates all the moments of a given order over a given control volume as
well as moments of one higher order over the interface. The accuracy of the esti-
mate depends on dimension, the order of the moment, and the accuracy of the Taylor
approximation.

We wish to estimate moments on the discretization of an irregular domain, Ω, defined
implicitly using an “implicit” function, φ : RD → R, i.e.:

Ω = {x : x ∈ R
D, φ(x) < 0} (6)

and

Ω0 = {x : x ∈ R
D, φ(x) = 0} (7)

Typically, Ω will be discretized on a set of control volumes, V , formed by intersecting
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rectangular cells with Ω and Ω0:

V = {[ih, (i+ u)h] ∩ Ω : i ∈ Z
D} (8)

where u ∈ Z
D and all its components are one and h is the size of the rectangular

cells. Implicit function representations have several advantages:

• The implicit function, φ(x), is defined everywhere in R
D and thus Taylor expansions

of φ and functions of φ (e.g., n(x) = ∇φ(x)/|∇φ(x)|) can be computed anywhere
they exist if φ is smooth enough.

• Implicit functions can be used to represent a rich set of geometric shapes through
analytic expressions, interpolants of discrete, sampled data, or through constructive
solid geometry.

• Implicit functions can be easily restricted to lower dimensions, which is useful for
our recursion.

• Implicit functions can be extended to arbitrary dimensions allowing computations
to be done in phase spaces or space-time.

• Ω can implicitly evolve in time if φ is allowed to change with time.

2.1 Constructive Solid Geometry

Simpler implicit functions can be composed into more complex implicit functions
using constructive solid geometry, CSG. To do this, it is necessary to define the
complement, intersection, and union of irregular domains, Ωi, defined by implicit
functions, φi. This is done using the following correspondences:

{x : x /∈ Ωi} ⇔ −φi
{x : x ∈ ∪iΩi} ⇔ max

i
φi

{x : x ∈ ∩iΩi} ⇔ min
i
φi

Further, coordinate transformations, ψ, of Ω can be implemented as:

Ωψ = {x : x ∈ R
D, φ(ψ−1(x)) < 0}

Examples of ψ include rotations, translations, and scaling.

3 Linear System

Consider x ∈ R
D and p = (p0, p1, · · ·, pD−1) ∈ Z

D. Let ei ∈ Z
D represent the element

with a one in the ith position and zeros inD−1 remaining positions. Define r′ = r+e0.
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A basic observation that underlies our formulation is that the monomial xp can be
represented (non-uniquely) as the divergence of a vector field,

F =
1

pd + 1
xp

′

ed, (9)

where d ∈ {0, 1, · · ·D − 1} and p′ = p+ ed

If we apply (4) to F , and make a Taylor approximation of order R to the normal, we
see that:

∫

V
xp dV − nd(x0)

∫

AEB

xp
′

dA =





∑

± = +,−

±
∫

Ad

±

xp
′

dA

+
∑

1≤j≤R

∇jnd(x0)

j!

∫

AEB

(xd − xd0)
jxp

′

dA+O(hp+D+R),



 (10)

where x0 is a point sufficiently close to the interface for the Taylor remainder theorem
to hold. We adopt the point of view that the two integrals on the left hand side
are unknowns, which we have written as a linear combination of moments of the
same order over lower dimensions and higher order moments over the interface in the
current dimension. Assume for the moment that the right hand side is known. We
have exhibited one equation in two unknowns. However, in dimension D > 1, there
are two parameters, d and F , that correspond to additional equations and additional
unknowns. In dimension one, the interface integral equals zero and equation 10 reduces
to the fundamental theorem of calculus for monomials.

In particular, assume that we wish to calculate all moments of degree p. Let N(p)
denote the number of monomials of degree p in dimension D. For a given dimension,
D > 1, there are DN(p) equations of the same form a equation 10, each corresponding
to a partial derivative in the xd-direction. On the other hand, these equations use
N(p) + N(p − 1) unknowns: N(p) unknowns corresonding to the integrals over the
volume and N(p − 1) unknowns corresponding to integrals over the interface. Thus,
by calculating all the moments of degree p at once, we create an overdetermined linear
system.

For example, in dimension D = 3 the calculation for moments of degree 2 corresponds
to a matrix of size 18x9. In general, the functionN(p) in dimension D can be expressed
as:
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N(p) =
(D − 1 + p)!

(D − 1)!p!
(11)

4 Recursion

We have an exhibited an over-determined linear system, assuming the right hand side
is known. We now show our assumption is legitimate, given a particular organization
of the work.

For the purposes of illustration, consider the case D = 2. Assume p is given and R
are given, and that R satisfies the equation R = q−p−2, where q is the desired order
of accuracy. Let Gd denote a moment of degree p+R.

We observe that the estimate:

0 =
∫

AEB

(xd − xd
EB

)Gd dA (12)

is sufficiently accurate. Thus we may calculate moments of degree p+R using only the
one-dimensional information corresponding to the first term on the right hand side.
Similarly, having calculated moments over the interface of degree p+R to qth-order,
we may combine these with one-dimensional information to calculate all moments of
degree p + R − 1 to the same qth-order accuracy. Continuing this process, we can
recursively calculate all the needed moments over the interface, relying on the fact
that a moment of one degree higher uses a Taylor approximation with one fewer term
to achieve qth-order accuracy.

We have shown that, subject to our ability to solve over-determined linear systems,
we can estimate moments to any degree of accuracy in two dimensions. In three
dimensions, the two dimensional information provides the first term on the right
hand side and a similar recursion in the degree of moments provides the second term
of the right hand side.

For arbitrary dimension, D, and arbitrary degree, p, and desired order of accuracy,
q, if we compute from lower dimensions to higher and from higher degree to lower,
we can create a sequence of over-determined linear systems. The solution vector for
a given system in our sequence represents qth-order estimates of moments of degree
p+R and lower over the D-dimensional volume, its boundaries, or the boundaries of
its boundaries, and so on, down to one-dimensional coordinate aligned line segments.
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5 Least Squares

Having created our linear system, we wish to use least squares to estimate the mo-
ments. Using least squares to calculate all the moments of a given order over a domain
provides an advantage that many possible special cases and numeric complications are
handled cleanly. Furthermore, the ability to impose linear constraints on the solution
vector removes the need to post-process the solution to guarantee physical properties,
such as the condition that moments of even degree are positive.

Indeed, when the implicit function is under-resolved or the interface lies tangent to cell
faces, the algorithm can produce negative volumes or place a centroid outside of the
cell. We introduce constraints as a method of enforcing a priori or application-specific
information about the moments. Our goal is to ensure reasonable values without
refining h. The most general bounds that we enforce are the bounds on a monomial
implied by full quadrature on all the negative and positive contributing regions to the
monomial in the cell V − and V +, which are rectangular:

∫

V −

xp−ed dV − <=
∫

V
xp−ed dV <=

∫

V +

xp−ed dV + (13)

When the integrand xp−ed is zero-degree, this constraint ensures that volume and
areas fractions lie between zero and one. Constraining the higher degree monomials
prevents large values of higher degree monomials from influencing the later lower-
degree calculations.

We modify the bounds on the zero degree monomials to ensure the following relation-
ship between them and all the (previously calculated) moments of degree p > 0:

∫

V
x0 dV min

V
(xp) <=

∫

V
xp dV <=

∫

V
x0 dV max

V
(xp−ed) (14)

This constraint serves two purposes. First, it places face centroids within their bounds.
Second, it imposes a lower bound on volumes and areas that is greater than zero rather
than strictly zero.

Applications may invoke new assumptions that facilitate tighter bounds. Figure ***
illustrates the ”no undercut bank” constraint that is useful in shallow water geometry
calculations. The volume is constrained by the area of the top face times the depth of
the cell. The constraint ensures that the average depth of the cell (volume over area)
is within the cell. Because the constraint is a relationship between dimensions, in our
algorithm it must be imposed on the higher dimension.

The set of active constraints can also be used as a criterion of fit in a local refinement

8



scheme, alongside residuals error. We are developing a scheme in which the constraints
serve both a refinement criterion and as a recourse after a maximum level of refinement
is exhausted.

Our implementation of constraint least squares was carried out using QuadProg++, a
freeware implementation of the Goldfarb-Idnani algorithm [GI83] for convex quadratic
programming with linear equality and inequality constraints implemented for small-
medium sized problems. We selected this implementation in part due to its minimal
dependencies on larger libraries. The GF algorithm is an active set method, so we will
be able to identify activate constraints for use as a refinement criterion. The general
linear constraints have not proved necessary and we are considering the performance
benefits of switching to an active set least squares solver with only bound constraints.

6 More on Least Squares

Each equation in our system is accurate to o(D+p+R) and hence the computed least
squares solution will have the same accuracy, provided our system is well-conditioned.
Indeed, the condition number of our system is independent of h and independent of
the direction of the normal(cite example matrix and calculation). Moreover, under
least squares, the error for each equation tends to be roughly the same in absolute
terms as well as being the same order. Unfortunately, in special cases the exact answer
to some equations in the system can be approximately the same as the error. That is,
the relative error can be large. For example, if the volume is small, but the implicit
function is changing rapidly, the error arising from the Taylor approximation can
be the same magnitude as the volume, which is not a satisfactory calculation. This
is particularly likely to happen, when the point of expansion in the Taylor series is
farther from the interface and particularly likely to happen when different components
of the solution vector are of widely different magnitudes. For example, a first moment
on the boundary can often be large compared to the zeroth moment in the volume
as in figure??? Both of these quantities can are computed in a single least squares
problem, which leads to an estimated solution with large relative error in the zeroth
moment and small relative error in the first moment.

Refinement and the use of constraints mitigate this problem. Refinement does more
work to get a better answer and constraints do a little extra work to prevent an answer
from violating common sense. However, there is a third improvement, also requiring
only slightly more work, that we wish to describe.

We introduce another step in the algorithm: moving the origin in a moment calcula-
tion. Using the binomial theorem we represent a moment of the form:
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∫

V
(x− x0)

p dV (15)

as a sum of moments of the form:

∫

V
(x− x1)

p
′

dV (16)

for p′ = 0, 1, 2 · · ·p. Given that we are requested to calculate moments with the origin
at x0, we identify a point x1 by the following procedure.

Let E denote the set of points lying on the edges of V . Let I denote the set of points
where the interface intersects the edges in E. That is, I = {x : φ(x) = 0} ∩ E. We
define a point, denoted earlier xEB, as the average of points in I. If we denote the
number of points in I by N, then the equation for xEB is:

xEB =
1

N

∑

x∈I

x (17)

Given that we wish to compute a moment with respect to an origin at a point x0 as
in equation 15, we perform this work in two steps: first we calculate all moments of
degree less than or equal to p with respect to an origin a x1 = xEB using an Taylor
approximation of the normal also centered an xEB. Secondly, we use the binomial
theorem to represent the desired moment.

This extra step diminishes the error, although the order of accuracy remains the same
(quote example). We attribute the improved accuracy to two factors. First the error
in the Taylor approximation to the normal is diminished, provided xEB is closer to the
interface on average than x0. Secondly, empirically, there are fewer examples where
different components of the solution vector vary widely in magnitude.

7 Refinement

There are two cases in which the algorithm can provide an inadequate calculation.

Some implicit functions, arising for example from digital elevation maps or image
data, have features at every resolution. A calculation at any fixed h will come under
stress at regions of high curvature, when edges have multiple intersections, and when
thin bodies are marginally resolved.
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On the other hand, even well-resolved, slowly varying implicit functions, such as a
sphere with a radius much larger than h, can lead to inaccurate calculations for lower
dimensional problems. For example, given a sphere in three dimensions, there are
cells, V , where the interface is nearly tangent to a face of V . In an extreme case,
the projection of the interface onto a two dimensional face results in a closed curve
entirely contained within the face. Such a calculation is clearly under-resolved, leading
to inaccurate answers for the face moments and an inaccurate right hand side for the
three dimensional moments.

The solution we employ for this problem requires that we detect when this phenomena
occurs. Having detected that refinement is necessary,

• We partition the cell into 2D smaller problems.
• Since the moments of the smaller problems are with respect to an origin appro-
priate for the smaller problem, we employ the binomial theorem to combine this
information into moments with respect to the origin of the larger problem.

• Having calculated moments with respect to the correct origin over smaller disjoint
regions, we sum the moments to achieve the final answer.

It remains to decide what method works best for detecting that refinement is neces-
sary. In some cases, for example in implicit functions arising from digital elevation
maps or image date, a priori knowledge of the the location of thin bodies can lead to
a simple method of tagging certain cells. Otherwise, for example in implicit functions
arising from analytic expressions, a priori bounds on the derivatives of the implicit
function may be available. These bounds may be used to anticipate when the change
in the normal over the interface exceeds some threshold. Similarly, direct discrete
estimates of the change in the normal can be calculated.

The least squares part of the alorithm can be asked to reprot when the constraints
were active, which can be used to infer that the calculation is under resolved. The
least squares module can also report the residual, which can contribute to a refinement
criterion.

All or some of the methods above can be combined in a boolean algebra to create
complex criteria.

8 Data Structures

Our implementation depends on two data structures, that we call IFData and Cut-
CellMoments. In our C++ implementation, these are templated classes that use the
number of space dimensions as the template parameter. For the purposes of expo-
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sition, it suffices define to data structures parameterized by an integer parameter,
dimension. Thus we may write IFData(dim) or CutCellMomentData(dim) when we
wish to show the dependence on the parameter. For example, moments over V ⊂ RD

are stored in a CutCellMoments(D).

8.0.1 IFData

IFData(d) is constructed from a cell center, a grid spacing, and a dimension. It en-
capsulates relevant information in φ used to construct the linear system.

• At each of the 2d corners of the rectangular cell, we record whether the corner is
in Ω, the complement of Ω, or Ω0, which is nearly always determined by evaluating
φ at the corner. However, for φ sufficently close to 0, we assign the corner to Ω0.
In our work we set the corner value to 0 when |φ| < 1.0 e-15. This rare, slight
modification of φ increases the robustness of algorithms that make logical choices
based on whether an edge is completely contained in Ω or completely contained in
the complement of Ω.

• At each edge of the rectangular cell, we record an intersection point if the interface
intersects the edge. We discover this intersection through a root-finding algorithm
such as Brent’s algorithm.

• We record the average of the intersection points and denote this point, the “local”
origin.

• Another point, passed in on construction of the IFData(d), is denoted “parent”.
• At the “local” origin, we evaluate φ, n and a pre-determined number of partial
derivatives of n.

8.0.2 CutCellMomentData

A CutCellMomentData is contstructed from an IFData. For any space dimension d,
such that 2 ≤ d ≤ D, CutCellMoments(d) contains

• an IFData(d)
• moments over regions, V ⊂ Rd

• moments over regions V ∩ Ω0 ⊂ Rd−1

• CutCellMomentsData(d-1) corresponding to the coordinate aligned faces of V

A CutCellMomentData(1) contains integrals of monomials over a line segment.
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Fig. 1. Without refinement, The volume of the sphere does not converge in the max
norm.

Fig. 2. The lower dimensional problem is under-resolved when a coordinate face is
tangent to the interface.

Fig. 3. Convergence to second order for the sphere after refining at six cells.

Fig. 4. In some cases, a sufficiently accurate answer is non-physical.

Fig. 5. Using constraints, centroids are within the cell and volumes are positive.

9 Results

9.1 Three dimensional, second order results

Our first result illustrates the need for refinement. Figure (1) shows an absence of
the specified convergence rate in the max norm for the well-resolved sphere. Closer
inspection reveals that in the six places where a face of a computational cell is nearly
tangent to a coordinate plane, the associated two dimensional problem is under-
resolved. See figure (2) We identify under-resolved cells based on several criteria,
such as the change in the normal, whether constraints were active, or the size of the
residual. When a cell is identified as under-resolved, we calculate moments on 2D finer
problems, which are then recombined for the final calculation. Figure (3) shows the
results with refinement.

Our second result illustrates the use of constraints to keep computed answers phys-
ically realistic. In figure (4), we demonstrate that in typical applications, one inex-
pensive solution to under-resolution, can be the use of constrained least squares. Use
of contraints can keep the answer from violating physical constraints without the
additional work of refinement. In addition the use of constraints can incorporate ap-
plication specific information, such as the “no-undercut” assumption in the SF Bay
and Delta shoreline.
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Fig. 6. Slices of the error for the fouth order calculation on the sphere

Fig. 7. Using more terms in the Taylor series for the normal, we exhibit fourth order
convergence on the sphere.

Fig. 8. Using Richardson extrapolation we exhibit fourth order convergence for a
polynomial implicit function: 2x2 + 4y3 + 3xy

Fig. 9. Third order convergence for a three dimensional sphere moving in time.

9.2 Three dimensional, fourth order results

We exhibit fourth order results for a sphere. Figure (6) shows slices of the error. Figure
(7) shows the convergence rate. In figure (8) Richardson extrapolation illustrates
fourth order convergence using a polynomial implicit function.

9.3 Four dimensional, third order results

In figure (9), we exhibit third order convergence on three dimensional sphere moving
in fourth dimension, time.

10 Conclusion

It has been shown that moment calculations can be done in arbitrary dimension to ar-
bitrary accuracy. If the irregular boundary is defined by implicit functions, computing
these moments can be computed using the divergence theorem, Taylor expansions,
least squares, recursion, and 1D root finding. Where the interface is under-resolved,
automatic detection leads to a refined calculation. For grid generation, the resulting
computations are embarassingly parallel, robust and efficient over complex domains
arising from data, man-made structures, and analytic representations.

This research was supported by the Office of Advanced Scientific Computing Research
of the US Department of Energy under contract number DE-AC02-05CH11231.
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