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Abstract. In this paper, we discuss some of the issues in obtaining high performance for
block-structured adaptive mesh refinement software for partial differential equations in complex
geometry using embedded boundary / volume-of-fluid methods. We present the design of an
adaptive embedded boundary multigrid algorithm for elliptic problems. We show examples
in which this new elliptic solver scales to 1000 processors. We also apply this technology to
more complex mathematical and physical algorithms for incompressible fluid dynamics and
demonstrate similar scaling.

1. Introduction

We use a Cartesian grid embedded boundary (EB) method to discretize partial differential
equations in the presence of complex geometry in 3D. In this approach, the irregular domain is
discretized as a collection of control volumes formed by the intersection of the problem domain
with the cubic Cartesian grid cells. The various operators are approximated using finite volume
differences on the irregular control volumes based on the divergence theorem. This approach has
been used as the basis for second-order accurate methods for elliptic, parabolic and hyperbolic
PDEs in two and three dimensions [3, 9], and have been combined using the predictor-corrector
approach in [1] to solve the equations of incompressible fluid dynamics in irregular geometries
[10]. One of the principal advantages of an embedded boundary volume-of-fluid method is that
it is compatible with a robust and accurate level-set technique for grid generation of geometries
obtained from image data [4, 8]. Furthermore, the EB approach is amenable to performance-
boosting strategies such as adaptive mesh refinement (AMR) and parallelism. Here, we present
the algorithm design for high performance computations of elliptic problems using adaptive
embedded boundary methods and extend this computational approach to the multiple elliptic
operators needed to solve the PDEs which describe incompressible fluid dynamics.

2. AMR Multigrid Algorithm

First, we present the design of a non-EB adaptive multigrid algorithm for elliptic problems.
AMRMultigrid is a natural extension of a multigrid iteration algorithm, with this particular
version being based on [6]. A pseudo-code description of the algorithm is given in Figure 1. The
operator Lnf is a two-level discretization of the Laplacian:

Lnf (ψl, ψl−1,valid) = D(~Gf (ψl, ψl−1,valid)) (1)



procedure Solve(l, lbase)
R := ρ− L(ϕ)
while (||R|| > ǫ||ρ||)

AMRVCycleMG(l − 1, lbase)
R := ρ− L(ϕ)

end while

procedure AMRVCycleMG(l, lbase)
if (l = lmax)

Rl := ρl − Lnf (ϕl, ϕl−1)
end if

if (l > lbase)
ϕl,save := ϕl on Ωl

el := 0 on Ωl

RelaxLevel(Lnf , el, Rl, nl−1

ref , false)

ϕl := ϕl + el

el−1 := 0 on Ωl−1

Rl−1 :=

{

Average(Rl − Lnf (el, el−1)) on C
n
l−1

ref

(Ωl)

ρl−1 − Lcomp,l−1(ϕ) elsewhere in Ωl−1

AMRVCycleMG(l − 1, lbase)
el := el + Ipwc(e

l−1)
Rl := Rl − Lnf (el, el−1)
δel := 0 on Ωl

RelaxLevel(Lnf , δel, Rl, nl−1

ref , false)

el := el + δel

ϕl := ϕl,save + el

else

SolveLevel(Lnf , e0, R0) (solve Lnf (e0) = R0 on Ω0)
ϕ0 := ϕ0 + e0

end if

Figure 1. Pseudo-code description of the AMR multigrid algorithm.

The smoothing operator RelaxLevel(ϕf , Rf , r, final) performs a multigrid V-cycle iteration on
ϕf for the operator Lnf . In this V-cycle, level f is only coarsened until it is a factor of 2 finer
than the next coarser AMR level. The coarse-grid values required for the boundary conditions
are assumed to be identically zero.

Code re-use is facilitated by using a Template Method design pattern [5]. The purpose of the
Template Method design pattern is to define an algorithm as a fixed sequence of steps where
one or more of the steps is over-ridden. In our case we have a hierarchy of algorithms that we
wish to re-use across a family of applications, such as the various elliptic operators involved in
solving the equations of incompressible fluid dynamics. The hierarchy of algorithms is defined
by the specific variable steps that an application must provide to complete the algorithm.

3. EB AMR Elliptic Operator

The EBAMRElliptic operator implements the AMRMultigrid template to solve elliptic problems
with complex geometry. There are several issues that must be addressed to obtain solutions to
elliptic problems in complex geometry where EB is employed: flexible data structures for fast
computations where special discretization stencils are employed; elimination of temporary data;
minimization of communication; and operator-dependent load-balancing.



3.1. Serial Performance

First, we optimized for performance in serial. Flux calculations in irregular cells involve
specialized stencils. Aggregate stencil operations, where only pointers to memory and integer
offsets are stored and recalled for calculations in irregular cells, resulted in the most significant
EB-specific improvement – a factor of 100 over our previous initial implementation. A caching
technique was also developed, based on pointers and integer offsets, in order to eliminate
storage of temporary data structures, when, for example, updating data in place occurs. This
turned previously high-order indirection access into single-order indirection and much shorter
instruction depth, which is more suitable for current micro-processors.

The original relaxation strategy involved 2D-color relaxation, requiring a data striding of 2D.
This was robust and stable but incurred a very high serial performance cost because of its poor
re-use of cache-line data on cache-based processors. Careful analysis allowed us to replace this
scheme with a 2-color red-black relaxation which both reduced the intra-level communication
costs, and allowed greater re-use of data in cache lines on relaxation sweeps. The elimination of
redundant application of boundary conditions also helped regularize the data access pattern.

3.2. Parallel Optimizations

In addition to serial optimization, distributed memory parallel performance requires algorithm
modifications. Unlike the non-EB AMR elliptic solver, it is not adequate to perform a static
load balance of boxes to processors based on the volume of a box. Prior to executing the
AMRMultigrid algorithm, each AMR level is re-balanced based on our EBEllipticLoadBalance
routine. EBEllipticLoadBalance computes the Laplacian operator on each box and measures
the actual time taken. This data is then passed to the load balance routine that subdivides
the space-filling curve. Space-filling curve algorithms are a means of ordering boxes within a
level to minimize intra-level communication. We use a Morton ordering approach. If D is the
spatial dimension of the problem, Morton ordering [7] is a 1-1 mapping of ZD onto Z with good
locality: the fraction of nearest neighbors in ZD of the inverse image of an interval I ⊂ Z of
length M whose Morton indices are not in I is O(M−1/D). See [2] for details.

Some additional optimizations in parallel result from minimizing communication in the
relaxation scheme. A “lazy” relaxation scheme needs only to exchange data with other
boxes once per iteration, not the number of colors per iteration, because of the checker
board operations. While this optimization is not quite the optimal strategy in serial, it is
a significant improvement in parallel. Similarly, we can eliminate multiple applications of
boundary conditions in this “lazy” routine.

Box edge and corner communication can also be minimized by trimming the number of ghost
cells needed to communicate boundary conditions (e.g., Neumann requires one ghost cell per cell,
Dirichlet, three). This optimization does not have a significant impact on the amount of data
needing to be communicated, but it does have a significant impact on the number of processors a
given processor must communicate with, thus reducing the number of messages. This improves
latency, and intra-level relaxation communication is latency bound, not bandwidth limited.

Inconsistent stencils, that is, stencils where fluxes on embedded boundaries are simply
determined by the cell-centered value of the irregular cell and not by proper second-order
extrapolations, led to faster multigrid iterations; however, multigrid convergence was a factor of
5 worse, and, thus, not an overall win.

3.3. Results for Poisson’s Equation

To demonstrate scaling and performance of our EBAMRElliptic operator we constructed a weak
scaling test. In weak scaling, the size of the problem is increased with the number of processors,
as opposed to holding the size of the problem fixed as in strong scaling (see [2] for details).
For example, we solve Poisson’s equation around a sphere inside of a box on 8 processors at



Figure 2. Example of replication of grids for scaling test. One replication unit (L) is equivalent
to a base grid resolution of 32 × 32 × 32, with 3 levels of adaptivity, factor of 2 refinement,
and maximum grid resolution for an individual box in the AMR layout of 16 × 16 × 16 on 8
processors. Grids are replicated by a factor of 2 from left to right, from 8-64 processors.

a base grid resolution of 32 × 32 × 32 with 3 levels of adaptivity, factor of 2 grid refinement.
This problem represents one replication unit. For 16 processors the number of cells and length is
doubled in one dimension, adding another sphere such that the base grid resolution is 64×32×32
and the domain is a rectangular prism. The replication is repeated for 32 processors in another
dimension. Figure 2 shows a factor of 8 replication for the 64 processor test problem in the
suite.

In Figure 3, we show plots of wall clock time for the elliptic solver part of the calculation on
the Cray XT4 for 8 to 1024 processors. We normalize the times by the time to solve the smallest
problem (one replication unit, 8 processors, or 0.074 seconds). We observed 54% efficient scaled
speedup over a range of 8-256 processors, corresponding to a wall clock time of 0.074-0.135
seconds. For higher concurrencies, we observe 44% efficient scaled speedup over a range of
8-1024 processors.

3.4. Implementation and Results for Incompressible Navier-Stokes

We extended the EB elliptic solver performance optimizations to a predictor-corrector algorithm
for incompressible, viscous flow (see [1], for example). The elliptic solver is re-used across
multiple operators in one advance timestep: two Poisson equations for the pressure projections
that enforce incompressibility (advection and update steps); three Helmholtz equations for the
components of velocity; and an additional Poisson equation for the projection filter in the update.
Performance is also optimized by making certain derived quantities and diagnostics optional,
such as norm calculations for checking incompressibility of the velocity field, as well as I/O.

We performed a weak scaling test for the EBAMRINS solver that is based on replication
similar to that for EBAMRPoisson, but with a coarser base grid by a factor of 2. In Figure
3 we demonstrate a scaling pattern for the EBAMRINS solver that is very similar to that of
EBAMRPoisson. We note that this study was focused primarily on elliptic scaling, but the
pattern indicates that the hyperbolics scale very well.

4. Conclusion

We have demonstrated the scalability of adaptive embedded boundary methods to 1000
processors for elliptic problems with complex geometry and have extended this technology to an
incompressible Navier-Stokes solver. Aggregate stencil operations have all but eliminated the
time needed to perform calculations for the special stencils in irregular cut cells resulting from
the embedded boundary approach. Operator-dependent load balancing with Morton ordering
helps minimize intra-level communication. An efficient relaxation scheme has further improved
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Figure 3. (L) Weak-scaling results for the EBAMRPoisson solver for 8 to 1024 processors.
Replication of grids for the scaling test is shown in Figure 2. (R) Weak-scaling results for the
EBAMRINS solver for 8 to 1024 processors, with a factor of 2 coarser base grids.

performance of elliptic solvers by better caching and cache re-use. In conclusion, embedded
boundary methods are a fast, efficient and simple technology for handling grid generation for
complex geometry and, when combined with adaptive mesh refinement, provide a powerful
high-resolution tool for modeling multi-scale fluid dynamics in complex geometry.
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