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Chapter 1

Layer 1–EBTools

1.1 Introduction

This document is to describe the EBTools component of the EBChombo distribution.
This infrastructure is based upon the Chombo infrastructure developed by the Applied
Numerical Algorithms Group at Lawrence Berkeley National Laboratory [4]. EBTools is
meant to be an infrastructure for Cartesian grid embedded boundary algorithms. The goal
of this software support is to provide a relatively compact set of abstractions in which the
Cartesian grid embedded boundary algorithms we are developing can be expressed and
implemented. The particular design we are proposing here is motivated by the following
observations. First, the dependent variables in a finite difference method are represented
as arrays defined on subsets of an index space. Second, the transformations on arrays
can be expressed as combinations of pointwise operations on the arrays, and of sums over
nearby points of arrays, i.e., stencil operations. For standard finite difference methods
on rectangular grids, the index space is the d-dimensional rectangular lattice of d-tuples
of integers, where d is the spatial dimension of the problem. For multigrid or AMR
methods, the index space is the hierarchy of d-dimensional rectangular lattices, where
the successive members of the hierarchy are related to one another by coarsening and
refinement operations. In both of these cases, the stencil operations can be expressed
formally as a loop over stencil locations. In the AMR case, both the stencil locations and
the locations where the stencil operations are applied are computed using a set calculus
on the index space. If one fully exploits this picture to derive a set of abstractions for
expressing these algorithms, it leads to a very concise implementation of the algorithms
in these two domains.

The above characterization of finite difference methods holds for the EB algorithms
as well, with the critical difference that the index space is no longer a rectangular lattice,
but a more complicated object. In the case of a non-hierarchical grid representation,
the index space is a combination of a rectangular lattice (the Cartesian grid part) and a
graph representing the irregular cell fragments that abut the irregular boundary. For a
hierarchical method, we have one such index space for each level of refinement, related to
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one another by coarsening and refinement operations. In addition, we want to support the
overall implementation strategy that the bulk of the calculations (corresponding to data
defined on the rectangular lattice) are performed using rectangular array representations,
thus restricting the irregular array accesses and computations to a set of codimension
one. Finally, we wish to appropriately integrate the AMR implementation strategies for
block-structured refinement with the EB algorithms.

1.2 Overview of Embedded Boundary Description

Cartesian grids with embedded boundaries are useful to describe volume-of-fluid represen-
tations of irregular boundaries. In this description, geometry is represented by volumes
(Λhd) and apertures ( ~Aαhd−1). See figure 1.1 for an illustration. In the figure, the grey
area represents the region excluded from the solution domain and the arrows represent
fluxes. A conservative, “finite volume” discretization of a flux divergence ∇ · ~F is of the
form:

∇ · ~F ≈
1

Λh

∑
~F α · ~Aα (1.1)

This is useful for many important partial differential equations. Consider Poisson’s equa-
tion with Neumann boundary conditions

∇ · ~F = ∆φ = ρ on Ω . (1.2)

∂φ

∂n
= 0 on ∂Ω (1.3)

The volume-of fluid description reduces the problem to finding sufficiently accurate gradi-
ents at the apertures. See Johansen and Colella [10] for a complete description of solving
Poisson’s equation on embedded boundaries. Hyperbolic conservation laws can be solved
using similar divergence examples. See Modiano and Colella [14] for such an algorithm.
Gueyffier, et al. [7] use a similar approach for their volume-of-fluid application. The only
geometric information required for the algorithms described above are:

• Volume fractions

• Area fractions

• Centers of volume, area.

The problem with this description of the geometry is it can create multiply-valued cells
and non-rectangular connectivity. Refer to figure 1.2. The interior of the cartoon airfoil
represents the area excluded from the domain and the lines connecting the cell centers
represent the connectivity of the discrete domain This very simple geometry produces a
graph which is more complex than a rectangular lattice simply because the grid which
surrounds it cannot resolve the geometry. The lack of resolution is fundamental to many
geometries of interest (trailing edges of airfoils, infinitely thin shells). Algorithms which

6



Figure 1.1: Embedded boundary cell. The grey area represents the region excluded from
the solution domain and the arrows represent fluxes.

require grid coarsening (multigrid, for example) also produce grids where such complex
connectivity occurs. The connectivity can become arbitrarily complex (see figure 1.3) in
general, so the software infrastructure must support abstractions which can express this
complexity.

Our solution to this abstraction problem is to define the embedded boundary grid as a
graph. The irregular part of the index space can be represented by a graph G = {N,E},
where N is the set of all nodes in the graph, and E the set of all edges of the graph
connecting various pairs of nodes. Geometrically, the nodes correspond to irregular control
volumes (cell fragments) cut out by the intersection of the body with the rectangular
mesh, and the edges correspond to the parts of cell faces that abut a pair of irregular cell
fragments. The remaining parts of space are indexed using elements of Zd, or are covered
by the body, and not indexed into at all. However, it is possible to think of the entire index
space (both the regular and irregular parts) as a graph: in the regular part of the index
space, the nodes are just elements of Zd, and the edges are the cell faces that separate
pair of successive cells along the coordinate directions. If we used this representation for
the entire calculation, the method would correspond to a unstructured grid method. We
will use this specification of the entire index space as a convenient uniform interface to
both the structured and unstructured parts of the index space.

We discretize a complex problem domain as a background Cartesian grid with an em-
bedded boundary representing the irregular domain region. See figure 1.4. We recognize
three types of grid cells or faces: a cell or Face that the embedded boundary intersects
is irregular. A cell or Face in the irregular problem domain which the boundary does not
intersect is regular. A cell or face outside the problem domain is covered. The boundary
of a cell is considered to be part of the cell, so that cells A, B and C in figure 1.5 are
irregular.

An irregular cell is formed from the intersection of a grid cell and the irregular problem
domain. We represent the segment of the embedded boundary as a single flat segment.
Quantities located at the irregular boundary are given the superscript B. Depending on
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Figure 1.2: Example of embedded boundary description of an interface. The interior of
the cartoon airfoil represents the area excluded from the domain and the lines connecting
the cell centers represent the graph connectivity of the discrete domain.

vy

Figure 1.3: Example of embedded boundary description of an interface and its corre-
sponding graph description. The graph can be almost arbitrarily complex when the grid
is underresolved.

Figure 1.4: Decomposition of the grid into regular, irregular, and covered cells. The gray
regions are outside the solution domain.
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B CA

Figure 1.5: Cells with unit volume that are irregular.

n

Λ

lh

h

Figure 1.6: Representable irregular cell geometry. The gray regions are outside the solution
domain.

Figure 1.7: Unrepresentable irregular cell geometry. The gray regions are outside the
solution domain.
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Figure 1.8: Multiple irregular VoFs sharing a grid cell. The left face of the grid cell is also
multi-valued. The gray region is outside the solution domain.

which grid faces the embedded boundary intersects, the irregular cell can be a pentagon,
a trapezoid, or a triangle, as shown in figure 1.6. A cell has a volume Λh2, where Λ is
its volume fraction. A face has an area ℓh, where ℓ is its area fraction. The polygonal
representation is reconstructed from the volume and area fractions under the assumption
that the cell has one of the shapes above. Since the boundary segment is reconstructed
solely from data local to the cell, it will typically not be continuous with the boundary
segment in neighboring cells. We also derive the normal to the embedded boundary face n̂
and the area of that face ℓBh.

We do not represent irregular cells such as shown in figure 1.7, in which the embedded
boundary has two disjoint segments in the cell. If such a cell is present, it will be recon-
structed incorrectly. The mathematical formulation and its implementation allow multiple
irregular cells in one grid cell, such as seen in figure 1.8.

1.3 Derived Quantities

We derive all our discrete geometric information from only the volume fraction and area
fraction data. To do this we often use a discrete form of the divergence theorem. Ana-
lytically, given a vector field ~B on a finite domain Ω (with some constraints on both):

∫

Ω

∇ · ~BdV =

∫

∂Ω

~B · n̂dA (1.4)

where n̂ is the unit normal vector to the boundary of the domain. We discretize this
equation so that a given volume of fluid (VoF) is the domain Ω. Given Vv is the volume
of a VoF and Af is the area of a face f , we discretize equation 1.4 as follows:

Vv∇ · ~B =
∑

f

~B · n̂Af . (1.5)
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By cleverly picking ~B, we can derive many of the geometric quantities that we need.
Telescoping sums force the discrete constraint to be enforced over the entire computational
domain.

1.3.1 Interface Normal and Area

Suppose ~B = êx, the unit vector in the x direction. Equation 1.4 becomes

∫

∂Ω

nx = 0, (1.6)

where nx0 is the component of the normal to ∂Ω in the x0 direction. Define n̂I to be the
normal to the embedded face and AI to be the area of the irregular face. Equation 1.5
becomes

Ax0,h − Ax0,l = nIx0AI (1.7)

where Ax0,h,l are the areas on the high and low side of the VoF in the x0 direction.
Because n̂I is a unit vector, |n̂I | = 1 and the area of the irregular boundary is given by

AI = (
D−1∑

i=0

(Axi,h − Axi,l)
2)

1
2 (1.8)

and the normal to the face in the x0 direction is given by

nIx0 =
Ax0,h − Ax0,l

AI
. (1.9)

For VoFs with multiple faces in a particular direction, we use the sum of the face areas in
equations 1.8 and 1.9.

1.4 Overview of API Design

The pieces of the graph of the discrete space are represented by the classes VolIndex
and FaceIndex. VolIndex is an abstract index into cell-centered locations corresponding
to the nodes of the graph (VoFs). FaceIndex is an abstract index into edge-centered
locations (locations between VoFs). The class EBIndexSpace is a container for geometric
information at all levels of refinement. The class EBISLevel contains the geometric
information for a given level of refinement. EBISLevel is not part of the public API and
is considered internal to EBIndexSpace. EBISBox represents the intersection between
an EBISLevel and a Box and is used for aggregate access of geometric information.
EBISLayout is a set of EBISBoxes corresponding to the boxes in a DisjointBoxLayout

grown by a specified number of ghost cells.
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Concept Chombo EBChombo

ZD —- EBIndexSpace
point in ZD IntVect VoF

region over ZD Box EBISBox
Union of Rectangles in ZD BoxLayout EBISLayout

data over region ZD BaseFab BaseEBCellFAB, BaseEBFaceFAB
iterator over points BoxIterator VoFIterator, FaceIterator

Table 1.1: The concepts represented in Chombo and EBChombo.

1.5 Data Structures for Graph Representation

The class VolIndex is an abstract index into cell-centered locations corresponding to
the nodes of the graph. The class FaceIndex is an abstract index into edge-centered
locations (locations between VoFs). It is characterized by the pair of VolIndexes that
are connected by the FaceIndex. The possible range of values that can be taken on by
a VolIndex or a FaceIndex is determined by the index space containing the VolIndex.
FaceIndexes always live at cell faces (there can be no FaceIndex interior to a cell). The
entire graph is represented in the class EBIndexSpace. It stores all the connectivity of the
graph and other geometric information (volume fractions, area fractions, etc). EBISBox

represents a subset of the EBIndexSpace at a particular refinement and over a particular
box in the space. EBISLayout is a collection of EBISBoxes distributed over processors
associated with an input DisjointBoxLayout.

1.5.1 Class EBIndexSpace

The entire graph description of the geometry is represented in the class EBIndexSpace. It
stores all the connectivity of the graph and other geometric information (volume fractions,
area fractions, etc). The important member functions of EBIndexSpace are as follows.

• void define(const Box& BoundingBox,

const RealVect& origin,

const Real& dx,

const GeometryService& geometry);

Define data sizes. BoundingBox is the Box which defines the domain of the
EBIndexSpace at its finest resolution. The arguments origin and dx specify the
location of the lower-left corner of the domain and the grid spacing in each coordi-
nate direction at the finest resolution. The geometry argument is the service class
which tells the EBIndexSpace how to build itself. See section 1.5.2 for a description
of the GeometryService interface class. Coarser resolutions of the EBIndexSpace
are also generated in the initialization process.
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• void fillEBISLayout(EBISLayout& ebisLayout,

const DisjointBoxLayout& dbl,

const Box& domain,

const int& nGhost);

Define an EBISLayout for each box in the input layout grown by the input ghost
cells. The input domain defines the refinement level at which the layout exists. The
argument dbl is the layout over which the data is distributed. If every box does not
lie within the input domain, a runtime error occurs. The domain argument is the
problem domain at the refinement of the layout. If the refinement does not exist
within the EBIndexSpace, a runtime error occurs. The nghost argument defines
the number of ghost cells in each coordinate direction.

• int numLevels() const;

Return the number of levels of refinement represented in the EBIndexSpace

• int getLevel(const Box& a_domain) const;

Return level index of domain. Return -1 if a_domain does not correspond to any
refinement of the EBIndexSpace.

EBIndexSpace can only be accessed through the the Chombo_EBIS singleton class.
The usage pattern follows this model. At some point, one defines the GeometryService
object one wants to use (in the example we use a SlabService) and defines the singleton
as follows:

SlabService slab(coveredBox);

EBIndexSpace* ebisPtr = Chombo_EBIS::instance();

ebisPtr->define(domain, origin, dx, slab);

Whenever one needs to define an EBISLayout, the usage is as follows:

void makeEBISL(EBISLayout& a_ebisl,

const DisjointBoxLayout& a_grids,

const Box& a_domain,

const int& a_nghost)

{

const EBIndexSpace* const ebisPtr = Chombo_EBIS::instance();

assert(ebisPtr->isDefined());

ebisPtr->fillEBISLayout(a_ebisl, a_grids, a_domain, a_nghost);

}

1.5.2 Class GeometryService

The GeometryService class defines an interface that EBIndexSpace uses for geometry
generation. EBIndexSpace builds an adaptive hierarchy of its geometry information.
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It queries the input GeometryService with a two pass algorithm. First EBIndexSpace
resolves which regions of the space are wholly regular, which are wholly covered, and which
contain irregular cells. Then EBIndexSpace loops through the regions which contain
irregular cells and sends these regions (in the EBISBox form to the GeometryService to
be filled. The interface of GeometryService is

• virtual bool isRegular(const Box& region, const Box& domain,

const RealVect& origin, const Real& dx)=0;

virtual bool isCovered(const Box& region, const Box& domain,

const RealVect& origin, const Real& dx)=0;

Return true if every cell in the input region is regular or covered. Argument region
is the subset of the domain. The domain argument specifies the span of the solution
index space. The origin argument specifies the location of the lower-left corner
(the zero node) of the solution domain and the dx argument specifies the grid
spacing.

• virtual void fillEBISBox(EBISBox& ebisRegion,

const Box& region,

const Box& domain,

const RealVect& origin,

const Real& dx)=0;

Fill the geometry of ebisRegion. The region argument specifies the subset of
the domain over which the EBISBox will live. The domain argument specifies the
span of the solution index space. The origin argument specifies the location of
the lower-left corner (the zero node) of the solution domain and the dx argument
specifies the grid spacing. EBIndexSpace checks that ebisRegion covers the
region on output. In this function, the GeometryService must correctly fill all of
the internal data in the EBISBox class (we enumerate this data in section 1.5.3.
This function is only called if isRegular and isCovered return false for the input
region. The steps for filling this data are as follows:

– Set ebisRegion.m_type=EBISBoxImplem::HasIrregular.

– Set ebisRegion.m_box=region.

– Resize and set ebisRegion.m_typeID. On covered cells you set this to -2,
on regular cells, you set it to -1 and on irregular cells you set it to 0 or higher,
corresponding to the cell’s index into ebisRegion.irregVols.

– Set the volumes in ebisRegion.m_irregVols. At each cell, create a vector
of volumes whose length is the number of VoFs in the cell. The internal
class Volume contains all the auxiliary VoF information which is not absolutely
necessary for indexing. For each Volume vol the GeometryService must set

∗ vol.m_index, the VolIndex of the volume.
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∗ m_volFrac, the volume fraction of the volume.

∗ m_loFaces, the low faces of the volume in each direction.

∗ m_hiFaces, the high faces of the volume in each direction.

∗ m_loAreaFrac, the low area fractions of the volume in each direction.

∗ m_hiAreaFrac, the high area fractions of the volume in each direction.

For a GeometryService to fill an EBISBox, it must extract the internal data of the
EBISBox and fill it. The internal data of EBISBox is described in section 1.5.3.

GeometryService is a friend class to EBISBox and has access to its internal data.
Not all compilers respect that classes which derive from friend classes are also friends.
Therefore the internal data should be accessed through these GeometryService functions
which are designed to get around this compiler feature:

• Box& getEBISBoxRegion(EBISBox& a_ebisBox) const

This returns a reference to the region that the EBISBox covers. This needs to be
set in all cases.

• EBISBoxImplem::TAG& getEBISBoxEnum(EBISBox& a_ebisBox) const

This returns a reference to the tag that marks whether the EBISBox is all regular,
all covered, or has irregular cells. This needs to be set in all cases.

• Vector<Vector<Vol> >& getEBISBoxIrregVols(EBISBox& a_ebisBox) const

This returns the list of irregular VoF representations. This must only be filled if the
this EBISBox is tagged to have irregular cells.

• BaseFab<int>& getEBISBoxTypeID(EBISBox& a_ebisBox) const

Return the flags for each cell in the EBISBox. This must only be filled if the this
EBISBox is tagged to have irregular cells. In this case, covered cells are to be tagged
with -2, regular cells are to be tagged with -1 and irregular VoFs are tagged with
the index into the vector of irregular volumes which corresponds to this particular
VoF.

• IntVectSet& getEBISBoxMultiCells(EBISBox& a_ebisBox) const

Returns a reference to the multiply-valued cells in the EBISBox. This must only be
filled if the this EBISBox is tagged to have irregular cells.

• IntVectSet& getEBISBoxIrregCells(EBISBox& a_ebisBox) const

Return a reference to the set of irregular cells in the EBISBox. This must only be
filled if the this EBISBox is tagged to have irregular cells.

An example of a GeometryService class is given in section 1.9.1.
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1.5.3 Class EBISBox

EBISBox represents the geometric information of the domain at a given refinement within
the boundaries of a particular box. EBISBox can only be accessed by using the the
EBISLayout interface. EBISBox has as member data

class EBISBox{

...

protected:

Tag m_type; //all reg, all covered, or has irregular

BaseFab<int> m_typeID; //-2 covered,-1 regular, 0 or higher irreg

Box m_box; //region

Vector< Vector< Volume > > irregVols;

where the internal class Volume contains all the auxiliary VoF information which is not
absolutely necessary for indexing. Volume has the form

struct Vol

{

//this stuff gets filled in the finest level

//by geometry service

VolIndex m_index;

Real m_volFrac;

Tuple<Vector<FaceIndex>, SpaceDim> m_loFaces;

Tuple<Vector<FaceIndex>, SpaceDim> m_hiFaces;

Tuple<Vector<Real>, SpaceDim> m_loAreaFrac;

Tuple<Vector<Real>, SpaceDim> m_hiAreaFrac;

//this stuff gets managed by ebindexspace

Vector<VolIndex> m_finerVoFs;

VolIndex m_coarserVoF;

};

The integers stored in m_typeid double as the indices into the the vectors of VoF infor-
mation. The important public member functions of EBISBox are as follows:

• IntVectSet getMultiCells(const Box& subbox) const;

Returns a list all multi-valued cells at the given level of refinement within the input
Box subbox.

• IntVectSet getIrregIVS(const Box& boxin) const;

Returns the irregular cells of the EBISBox that are within the input subbox.

• Vector<VolIndex> getVoFs(const IntVect& iv);

Gets all the VoFs in a particular cell.
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• int numVoFs(const IntVect& iv) const;

Returns the number of VoFs in a particular cell.

• Vector<FaceIndex> getFaces(const VolIndex& vof,

int idir, Side::LoHiSide sd);

Gets all faces at the specified side and direction of the VoF.

• bool isRegular(const IntVect& iv) const;

Returns true if the input cell is a regular VoF.

• bool isRegular(const Box& box) const;

Returns true if every cell in the input Box is a regular VoF.

• bool isCovered(const IntVect& iv) const;

Returns true if the input cell is a covered cell.

• bool isCovered(const Box& box) const;

Returns true if every cell in the input box is a covered cell.

• bool isIrregular(const IntVect& iv) const;

Returns true if the input cell is an irregular cell.

• int numFaces(const VolIndex& vofin,

int dir, Side::LoHiSide sd) const;

Returns the number of faces the input VoF has in the given direction and side.
Returns zero if the VoF has no faces in the given orientation.

• Real volFrac(const VolIndex& vofin) const;

Returns the volume fraction of the input VoF.

• bool isConnected(const VolIndex& vof1,

const VolIndex& vof2) const;

Return true if the two input VoFs are connected by a face.

• bool isAllCovered();

Return true if every cell in the EBISBox is covered.

• bool isAllRegular();

Return true if every cell in the EBISBox is regular.

• RealVect normal(const VolIndex& vofin) const;

Returns the normal to the body at the input VoF. Return the zero vector if the
answer is undefined (for example, if the VoF is regular or covered).
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• RealVect centroid(const VolIndex& vofin) const;

Returns the centroid of the VoF. Returns the zero vector if the VoF is regular or
covered. The answer is given as a normalized (by grid spacing) offset from the
center of the cell (all numbers range from -0.5 to 0.5).

• RealVect centroid(const FaceIndex& facein) const;

Return centroid of input face as a RealVect whose component in the uninteresting
direction normal to the face is undefined. In the (one or two) interesting directions
returns the centroid of the input VoF. Return the zero vector if the face is covered
or regular. The answer is given as a normalized (by grid spacing) offset from the
center of the cell face (all numbers range from -0.5 to 0.5).

• Real areaFrac(const FaceIndex& a_vof1);

Return the area fraction of the face. Returns zero if the two VoFs in the face are
not actually connected.

• Vector<VolIndex> refine(const VolIndex& coarseVoF) const;

Returns the corresponding set of VoFs from the next finer EBISLevel (factor of two
refinement). The result is only defined if this EBISBox was defined by coarsening.

• VolIndex coarsen(const VolIndex& vofin);

Returns the corresponding VoF from the next coarser EBISLevel (same solution
location, different index space, factor of two refinement ratio).

• void copy(const Box& a_regionFrom, const Interval& Cd,

const Box& a_regionTo,

const EBISBox& a_source, const Interval& Cs);

Copy the information from a_source over box a_regionFrom, to the a_regionTo
box of the current EBISBox. The interval arguments are ignored. This function is
required by the LevelData template class.

GeometryService is a friend class to EBISBox so it can manipulate the internal data of
EBISBox to create the geometric description.

1.5.4 Class EBISLayout

EBISLayout is a collection of EBISBoxes distributed across processors and associ-
ated with a DisjointBoxLayout and a number of ghost cells. In a parallel context,
EBISLayout is the way the user can create parallel, distributed data. EBISLayouts are
null-constructed and are defined by sending them to the fillEBISLayout(...) func-
tion of EBIndexSpace. EBISLayout is constructed around a reference-counted pointer
of an EBISLayoutImplem object so copying EBISLayouts is inexpensive and follows the
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reference-counted pointer semantic (changing the copied-to object changes the copied-
from object). Recall that one can coarsen and refine only by a factor of two using the
EBISBox class directly. Because EBISBox archives the information to do this, it is an inex-
pensive operation. Coarsening and refinement using larger factors of refinement must be
done through EBISLayout and it can be expensive, especially in terms of memory usage.
When one sets the maximum levels of refinement and coarsening, EBISLayout creates
mirrors of itself at all intermediate levels of refinement and holds those new EBISLayouts
as member data. Refinement and coarsening is done by threading through these interme-
diate levels. The important functions of EBISLayout follow.

• const EBISBox& operator[] (const DataIndex& a_datInd) const;

Access the EBISBox associated with the input DataIndex. Only constant access is
permitted.

• void setMaxRefinementRatio(const int& a_maxRefine);

Sets the maximum level of refinement that this EBISLayout will have to perform.
Creates and holds new EBISLayouts at intermediate levels of refinement. Default
is one (no refinement done).

• setMaxCoarseningRatio(const int& a_maxCoarsen);

Sets the maximum level of coarsening that this EBISLayout will have to perform.
Creates and holds new EBISLayouts at intermediate levels of coarsening. Default
is one (no coarsening done).

• VolIndex coarsen(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;

Returns the index of the VoF corresponding to coarsening the input VoF by the
input ratio. It is an error if the ratio is greater than the maximum coarsening ratio
or if the VoF does not exist at the input data index.

• Vector<VolIndex> refine(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;

Returns the indices of the VoFs corresponding to refining the input VoF by the input
ratio. It is an error if the ratio is greater than the maximum refinement ratio or if
the VoF does not exist at the input data index.

• const BoxLayout& getLayout() const

Return the ghosted layout that underlies the EBISLayout
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1.5.5 Class VolIndex

The class VolIndex is an abstract index into cell-centered locations which corresponds
to the nodes of the computational graph. Every VoF has an associated volume fraction
that can be between zero and one. A VoF with zero volume fraction has no volume inside
the solution domain. A VoF with unity volume fraction has no covered region. The types
of VoF are listed below:

• Regular: VoF has unit volume fraction and has exactly 2*D Faces, each of unit area
fraction.

• Covered: VoF has zero volume fraction and no faces.

• Irregular: Any other valid VoF. These are VoFs which either intersect the embedded
boundary or border a covered cell.

• Invalid: The VoF is incompletely defined. The default when you create a VoF, and
used as the out-of-domain VoF of a boundary Face.

Since we anticipate storing them in very large numbers, we design the class VolIndex
to be a very small object in terms of memory. Its only member data is an IntVect to
identify its cell and an integer identifier.

class VolIndex{

...

protected:

IntVect m_cell; // which cell am i in

int m_ident;

The integer identifier is used to find all the geometric information stored in its EBISBox.
The class VolIndex contains the following important member functions:

• IntVect gridIndex() const Returns the IntVect of the VoF.

• int cellIndex() const Returns the cell identifier of the VoF.

1.5.6 Class FaceIndex

The class FaceIndex is an abstract index into locations centered on the edges of the
graph. A FaceIndex exists between two VoFs and is defined by those VoFs. Ev-
ery FaceIndex has an associated area fraction that can be between zero and one. A
FaceIndex with zero area fraction has no flow area. A FaceIndex with unity area frac-
tion has no covered area. It should be noted that a FaceIndex knows whether it is a
boundary face or an interior face by which constructor was used to define it. Only friend
classes (EBISBox, GeometryService, EBIndexSpace...) may call the defining con-
structors. Only the null constructor of FaceIndex should be used by users. The internal
data of the FaceIndex class is as follows:
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int m_idir;

bool m_isBoundary;

int m_ivoflo;

int m_ivofhi;

IntVect m_ivhi;

IntVect m_ivlo;

The cell locations (the IntVects) can lie outside the domain if the FaceIndex is on the
boundary of the domain. The important member functions of this class are:

• const IntVect& gridIndex(Side::LoHiSide sd) const

Return the cell of the VolIndex on the sd side of the face.

• const int& cellIndex(Side::LoHiSide sd) const

Return the cell index of the VolIndex on the sd side of the face. Returns -1 if that
VolIndex is outside the domain of computation.

• VolIndex getVoF(Side::LoHiSide sd) const

Get the VoF at the given side of the face. Will return a VoF with a negative cell
index if the IntVect of that VoF is outside the domain.

• int direction() const;

Returns direction of the face. The direction of a FaceIndex is the integer coordinate
direction (0...D-1) whose unit vector is normal to the face.

• bool isBoundary() const

Returns true if the face is on the boundary of the domain.

1.6 Data Holders for Embedded Boundary Applica-

tions

A BaseIVFAB<T> is an array of data defined in an irregular region of space. The irregular
region is specified by the VolIndexs of an IntVectSet. Multiple data components per
VolIndex may be specified in the BaseIVFAB definition.

A BaseIFFAB<T> is an array of data defined in an irregular region of space. The
irregular region is specified by the faces of an IntVectSet. All the faces in a BaseIFFAB
must have the same spatial orientation, which is specified in the BaseIFFAB definition.
Multiple data components per face may be specified in the definition. BaseEBCellFAB

is a templated class which holds cell-centered data over a region which is described by a
rectangular subset of an embedded boundary. BaseEBFaceFAB is a templated class which
holds face-centered data over a similar region.
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1.6.1 Class BaseIFFAB<T>

A BaseIFFAB<T> is a templated array of data defined in an irregular region of space. The
irregular region is specified by the faces of an IntVectSet. All the faces in a BaseIFFAB
must have the same spatial orientation, which is specified in the BaseIFFAB definition.
Multiple data components per face may be specified in the definition. The important
functions of BaseIFFAB follow.

• BaseIFFAB(const IntVectSet& iggeom_in,

const EBISBox& a_ebisBox,

int dirin, int nvarin,

bool interiorOnly=false);

Defining constructor. The arguments specify the valid domain in the form of an
IntVectSet, the spatial orientation of the faces, and the number of data components
per face. The contents are uninitialized. The interiorOnly argument specifies
whether the data holder will span either the surrounding faces of the set or the
interior faces of the set.

• void setVal(T value);

Set a value everywhere. Every data location in this BaseIFFAB is set.

• void copy(const Box& a_intBox, const Interval& Cd,

const Box& a_toBox

const BaseIFFAB<T>& a_source, const Interval& Cs);

Copy the contents of another BaseIFFAB into this BaseIFFAB over the specified
regions and intervals.

• int nComp() const;

Return the number of data components of this BaseIFFAB.

• int direction() const;

Return the direction of the faces of this BaseIFFAB.

• T& operator() (const FaceIndex& edin, int varlocin);

Indexing operator. Return a reference to the contents of this BaseIFFAB, at the
specified face and data component. The first component is zero, the last is nvar-1.
The returned object is a modifiable lvalue.

1.6.2 Class BaseIVFAB<T>

A BaseIVFAB<T> is a templated array of data defined in an irregular region of space.
The irregular region is specified by the VolIndexs of an IntVectSet. Multiple data
components per VolIndex may be specified in the BaseIVFAB definition. The important
member functions of BaseIVFAB follow.
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• BaseIVFAB(const IntVectSet& iggeom_in,

const EBISBox& a_ebisBox,

int nvarin = 1);

Defining constructor. Specifies the valid domain in the form of an IntVectSet and
the number of data components per VoF. The contents are uninitialized.

• void setVal(T value);

Set a value everywhere. Every data location in this BaseIVFAB is set to the input
value.

• void copy(const Box& a_fromBox, const Interval& destInterval,

const Box& a_toBox,

const BaseIVFAB<T>& src, const Interval& srcInterval);

Copy the contents of another BaseIVFAB into this BaseIVFAB. over the specified
regions and intervals.

• T& operator() (const VolIndex& ndin, int varlocin);

Indexing operator. Return a reference to the contents of this BaseIVFAB, at the
specified VoF and data component. The first component is zero, the last is nvar-1.
The returned object is a modifiable lvalue.

1.6.3 Class BaseEBCellFAB<T>

A BaseEBCellFAB<T> is a templated holder for cell-centered data over a region which
consists of the intersection of a cell-centered box and an EBIndexSpace. At every un-
covered VoF in this intersection, the BaseEBCellFAB contains a specified number of
data values. At singly valued cells, the data is stored internally in a BaseFab<T>. At
multiply-valued cells, the data is stored internally in a BaseIVFAB. BaseEBCellFAB pro-
vides indexing by VoF and access to the regular data’s pointer for passage to FORTRAN
subroutines. This class does not provide a copy constructor or assignment operator.

The important functions for the class BaseEBCellFAB is defined as follows.

• void define(const EBISBox a_ebis,const Box& a_region,int a_nVar);

Full define function. Defines the domain of the BaseEBCellFAB to be the intersec-
tion of the input Box and the domain of the input EBISBox. Creates the space for
data at every VoF in this intersection.

• void setVal(T a_value);

Set the value of all data in the container to a_value.

• void copy(const Box& a_RegionFrom, const Interval& destInt,

const Box& a_RegionTo,
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const BaseEBCellFAB<T>& a_srcFab,

const Interval& srcInt);

Copy the data from a_srcFab into the current BaseEBCellFAB regions and intervals
specified.

• T& operator()(const VolIndex& a_vof, int a_nVarLoc);

Returns the data at VoF a_vof for variable number a_nVarLoc. Returns a modi-
fiable l value.

• BaseFab<T>& getSingleValuedFAB();

Returns the single-valued data holder. This holds all data which is single-valued
(regular and irregular). This is useful so that the data can be passed to Fortran
using the BaseFab interface.

• BaseIVFAB<T>& getMultiValuedFAB();

Returns the multi-valued data holder.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

1.6.4 Class EBCellFAB

An EBCellFAB is a holder for cell-centered floating–point data over a region which con-
sists of the intersection of a cell-centered box and an EBIndexSpace. It is an extension
of a BaseEBCellFAB<Real> which includes arithmetic functions. The data is stored
internally in a FArrayBox. At multiply-valued cells, the data is stored internally in a
BaseIVFAB<Real>. EBCellFAB provides indexing by VoF and access to the regular data’s
pointer for passage to FORTRAN subroutines. This class does not provide a copy construc-
tor or assignment operator. EBCellFAB has all the functions of BaseEBCellFAB<Real>
and the following extra functions:

• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• EBCellFAB& operator+=(const Real& a_valin);

EBCellFAB& operator-=(const Real& a_valin);

EBCellFAB& operator*=(const Real& a_valin);

EBCellFAB& operator/=(const Real& a_valin);

Add (or subtract or multiply or divide a_valin to (or from or by or into) every data
value in the holder.
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• EBCellFAB& operator+=(const EBCellFAB& a_fabin);

EBCellFAB& operator-=(const EBCellFAB& a_fabin);

EBCellFAB& operator*=(const EBCellFAB& a_fabin);

EBCellFAB& operator/=(const EBCellFAB& a_fabin);

Add (or subtract or multiply or divide) the internal values to (or from or by or into)
the values in fabin over the intersection of the domains of the two holders and put
the result in the current holder. It is an error if the two holders do not contain the
same number of variables.

1.6.5 Class BaseEBFaceFAB<T>

A BaseEBFaceFAB<T> is a templated holder for face-centered data over a region which
consists of the intersection of a cell-centered box and an EBIndexSpace. At every un-
covered face in this intersection, the BaseEBFaceFAB contains a specified number of
data values. At singly valued faces, the data is stored internally in a BaseFab<T>. At
multiply-valued cells, the data is stored internally in a BaseIFFAB. BaseEBFaceFAB pro-
vides indexing by face and access to the regular data’s pointer for passage to FORTRAN
subroutines. This class does not provide a copy constructor or assignment operator. The
important functions for the class BaseEBFaceFAB are defined as follows.

• void define(const EBISBox& a_ebis,

const Box& a_region, int a_idir, int a_nVar,

bool interiorOnly = false);

Full define function. Defines the domain of the BaseEBFaceFAB to be the inter-
section of the input Box and the faces of the input EBISBox in the given direction.
Creates the space for data at every face in this intersection. The interiorOnly

argument specifies whether the data holder will span either the surrounding faces
of the set or the interior faces of the set.

• void setVal(T a_value);

Set the value of all data in the container to a_value.

• T& operator()(const FaceIndex& a_face, int a_nVarLoc);

Returns the data at face a_face for variable number a_nVarLoc. Returns a mod-
ifiable l value.

• void copy(const Box& a_RegionFrom, const Interval& a_destInt,

const Box& a_RegionTo,

const EBFaceFAB<T>& a_source,

const Interval& a_srcInt);

Copy the data from a_source into the current BaseEBFaceFAB over regions and
intervals specified.
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• BaseFab<T>& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

1.6.6 Class EBFaceFAB

An EBFaceFAB is a holder for face-centered floating-point data over a region which con-
sists of the intersection of a face-centered box and an EBIndexSpace. It is an exten-
sion of a BaseEBFaceFAB<Real> which includes arithmetic functions. At single-valued
cells, the data is stored internally in a BaseFab<Real>. At multiply-valued faces, the
data is stored internally in a BaseIFFAB<Real>. EBFaceFAB has all the functions of
BaseEBFaceFAB<Real> and the following extra functions:

• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• EBFaceFAB& operator+=(const EBFaceFAB& fabin);

EBFaceFAB& operator-=(const EBFaceFAB& fabin);

EBFaceFAB& operator*=(const EBFaceFAB& fabin);

EBFaceFAB& operator/=(const EBFaceFAB& fabin);

Add (or subtract or multiply or divide) the values in a_fabin to (or from or by or
into) the internal values over the intersection of the domains of the two holders and
put the result in the current holder. It is an error if the two holders do not contain
the same number of variables. It is an error if the two holders have different face
directions.

• EBFaceFAB& operator+=(const Real& a_valin);

EBFaceFAB& operator-=(const Real& a_valin);

EBFaceFAB& operator*=(const Real& a_valin);

EBFaceFAB& operator/=(const Real& a_valin);

Add (or subtract or multiply or divide) a_valin to (or from or by or into) every
data value in the holder.

1.7 Data Structures for Pointwise Iteration

EBChombo contains two classes which facilitate pointwise iteration, VoFIterator and
FaceIterator. VoFIterator is used to iterate over every point in an IntVectSet.
FaceIterator iterates over faces in an IntVectSet in a particular direction.
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1.7.1 Class VoFIterator

VoFIterator iterates over every uncovered VoF in an IntVectSet inside an EBISBox. Its
important functions are as follows

• VoFIterator(const IntVectSet& a_ivs,

const EBISBox& a_ebisBox);

void define(const IntVectSet& a_ivs,

const EBISBox& a_ebisBox);

Define the VoFIterator with the input IntVectSet and the EBISBox. The
IntVectSet defines the points that will be iterated over and should be contained
within the region of EBISBox. Calls reset() after construction.

• void reset();

Rewind the iterator to its beginning.

• void operator++();

Advance the iterator to its next VoF.

• bool ok() const;

Return true if there are more unvisited VoFs for the iterator to cover.

• const VolIndex& operator() () const;

Return the current VoF.

The following routine sets the 0th component of the data holder to a constant value at
each point in the input set.

/******************/

void setPhiToValue(EBCellFAB& a_phi,

const IntVectSet& a_ivs,

const EBISBox& a_ebisBox,

const Real& a_value)

{

VoFIterator vofit(a_ivs, a_ebisBox);

for(vofit.reset(); vofit.ok(); ++vofit)

{

const VolIndex& vof = vofit();

a_phi(vof, 0) = a_value;

}

}

/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.
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1.7.1.1 Performance Note

VoFIterator caches all its VolIndexes into a Vector on construction. In this way,
VoFIterator is designed to be fast in iteration but not necessarily fast in construction.
If one were to find VoFIterator construction to be a significant performance issue in a
class, one might consider caching the VoFIterators one needs in the member data of
said class.

1.7.2 Class FaceIterator

The FaceIterator class is used to iterate over faces of a particular direction in an
IntVectSet. First we must define FaceStop, the enumeration class which distinguishes
which faces at which a given FaceIterator will stop. The entirety of the FaceStop
class is given below.

class FaceStop

{

public:

enum WhichFaces{Invalid=-1,

SurroundingWithBoundary=0, HiWithBoundary, LoWithBoundary,

SurroundingNoBoundary , HiNoBoundary , LoNoBoundary,

NUMTYPES};

};

The enumeratives are described as follows:

• SurroundingWithBoundary means stop at all faces on the high and low sides of
IntVectSet cells.

• SurroundingNoBoundary means stop at all faces on the high and low sides of
IntVectSet cells, excluding faces on the domain boundary.

• LoWithBoundary means stop at all faces on the low side of IntVectSet cells.

• LoNoBoundary means stop at all faces on the low side of IntVectSet cells, exclud-
ing faces on the domain boundary.

• HiWithBoundary means stop at all faces on the high side of IntVectSet cells.

• HiNoBoundary means stop at all faces on the high side of IntVectSet cells, ex-
cluding faces on the domain boundary.

Now we may define the important interface of FaceIterator:

• FaceIterator(const IntVectSet& a_ivs,

const EBISBox& a_ebisBox,

const int& a_direction,
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const FaceStop::WhichFaces& a_location);

void define(const IntVectSet& a_ivs,

const EBISBox& a_ebisBox,

const int& a_direction,

const FaceStop::WhichFaces& a_location);

Defining constructor.

• void reset();

Rewind the iterator to its beginning.

• void operator++();

Advance the iterator to its next face.

• bool ok() const;

Return true if there are more unvisited faces for the iterator to cover.

• const FaceIndex& operator() () const;

Return the current face.

The following routine sets the 0th component of the data holder to a constant value at
each face in the input set, including boundary faces.

/******************/

void setFacePhiToValue(EBFaceFAB& a_phi,

const IntVectSet& a_ivs,

const EBISBox& a_ebisBox,

const Real& a_value)

{

int direction = a_phi.direction();

FaceIterator faceit(a_ivs, a_ebisBox, direction,

FaceStop::SurroundingWithBoundary);

for(faceit.reset(); faceit.ok(); ++faceit)

{

const FaceIndex& face = faceit();

a_phi(face, 0) = a_value;

}

}

/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.
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1.7.2.1 Performance Note

FaceIterator caches all its FaceIndexes into a Vector on construction. In this way,
FaceIterator is designed to be fast in iteration but not necessarily fast in construction.
If one were to find FaceIterator construction to be a significant performance issue in a
class, one might consider caching the FaceIterators one needs in the member data of
said class.

1.8 Input/Output

1.8.1 Design Considerations

Goals of Input/Output API are:

• Binary portable files

• Completeness:

– An EBChombo data file should contain sufficient information to reconstruct
both the EBIndexSpace object, as well as the appropriate data type. In our
case we have broken these two functions into seperate files.

• Efficiency. An EBChombo data file should strive to be at least as space efficient as
the in-memory representation.

As of this time HDF5 still does not support asynchronous DATASET or GROUP
creation. This means that to achieve parallel performance we still cannot move to a
protocol that maps each EBISBox to an HDF5 DATASET.

1.8.2 HDF5 Data File Description

EBChombo uses two independent files. The first file is an output of the EBIndexSpace

object (a serialization). It outputs the EBIndexSpace at it’s finest resolution. At the finest
grid resolution there are no grid cells that contain multiple control volumes. This is called
the EBFile. We will strive to consistently use the file extension .eb for this file.

The second file is our EBData file. It handles EBChombo in a similar manner to
EBChombo: regular array data over most of the domain, unstructured data representation
where the embedded boundary intersects the regular cartesian. It is not a complete
geometry representation as it only stores geometric information at the AMR level of
refinement. We will use the file extension .ebd for these files.

ChomboVis can utilize the EBData file.
EBChombo can read and write both EBFile and EBData files. On read EBChombo

only extracts the non-geometric data from an EBData file. Geometric information is
sourced from the EBFile. A future optimization for EBChombo I/O would be an option
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to turn off the writing of geometric information into the EBData file when ChomboVis
will not be used, or when just regular cell visualization is adequate. This can wait until
profiling.

1.8.2.1 EBData file

We introduce four new H5T compound data types: H5T VOF2D, H5T VOF3D H5T FACE2D,

H5T FACE3D:

DATATYPE H5T_COMPOUND H5T_VOF*D {

H5T_REAL "volFrac";

H5T_REAL "bndryArea";

H5T_REALVECT "normal";

H5T_REALVECT "centroid";

H5T_INTVECT "cell";

}

DATATYPE H5T_COMPOUND H5T_FACE*D {

H5T_REAL "areaFrac";

H5T_REALVECT "centroid";

H5T_UINT "hiVol"; // used to index into an H5T_VOF*D array

H5T_UINT "loVol"; // any face only connects two VOFs

}

Header information (as HDF5 Scalar ATTRIBUTE unless otherwise specified ):

• "SpaceDim" { DATATYPE H5T INTEGER }

• "Filetype" { DATATYPE H5T STRING }

• "AspectRatio" { H5T REALVECT }

• "NumLevels" { H5T INTEGER : number of AMR data AND LevelSet levels

• DATASET "RefRatios" { DATATYPE H5T INTEGER }

• "ProblemDomain" { DATATYPE H5T BOX} coarsest grid index space

• "DX" { DATATYPE H5T REAL }

– coarse grid spacing

• ATTRIBUTE "Ghost" { DATATYPE H5T INTVECT }
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– not positive how to handle ghosting actually. do we allow the face and node
centered data to have a different amount of ghost cells ? What would the
LevelSet and Mask need to look like in this case ? Currently this is not going
to be allowed. All data sets in an EBData file have the same amount of ghost
cells.

– Box + Ghost are used to determine the sizei, sizej and sizek values. sizei=box.len(0)+2*ghost[0].

• "CellCenteredComponents" { GROUP}

– "NumC" { DATATYPE H5T INTEGER }

– "ComponentN" { DATATYPE H5T STRING } n’th cell-centered component name

• "XFaceCenteredComponents" { GROUP }

– "NumX" { DATATYPE H5T INTEGER }

– "ComponentN" { DATATYPE H5T STRING } n’th xface-centered component
name

• "YFaceCenteredComponents" { GROUP }

– "NumY" { DATATYPE H5T INTEGER }

– "ComponentN" { DATATYPE H5T STRING } n’th yface-centered component
name

• "ZFaceCenteredComponents" { GROUP }

– "NumZ" { DATATYPE H5T INTEGER }

– "ComponentN" { DATATYPE H5T STRING } n’th zface-centered component
name

• "NodeCenteredComponents" { GROUP }

– "NumN" { DATATYPE H5T INTEGER }

– "ComponentN" { DATATYPE H5T STRING } n’th node-centered component
name

for each AMR level there is an HDF5 GROUP named level n. For each AMR Box
at this level of refinement we have regular data, and a set of irregular data. The naming
convention has moved to uppercase-contiguous naming instead of lowercase-underscore
naming

• DATASET "Boxes" { DATATYPE H5T BOX }

– Same meaning as in regular Chombo IO.
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• DATASET "Processor" { DATATYPE H5T INTEGER }

– Processor assignment of ”Boxes” at the time of writing this file

• DATASET "Mask" { DATATYPE H5T CHAR }

– Dataset defined at every point of ”Boxes” same as Chombo regular data

– contains the number volumes in this grid cell.

– not sure if ”mask” should be combined with the LevelSet material. the mask
is cell-centered, whereas the LevelSet information is node-centered.

– set to -1 for cells outside problem domain

• DATASET "MOffsets" { DATATYPE H5T LLONG }

• DATASET "Levelset" { DATATYPE H5T REAL }

– node-centered real-valued data set defined over ”Boxes”

– function is negative valued on covered nodes, positive on uncovered nodes.

– I do not know yet if this will be an actual distance function.

– currently unimplemented

• DATASET "COffsets" { DATATYPE H5T LLONG }

• DATASET "CRegular" { DATATYPE H5T REAL }

– Regular cell-centered data over ”Boxes”

– Indexing the n’th component at position [i,j,k] in the b’th box:

– val = CRegular[COffsets[b]+n*(sizei*sizej*sizek)+k*(sizej*sizei)+j*sizei+i]

• DATASET "NOffsets" { DATATYPE H5T LLONG }

• DATASET "NRegular" { DATATYPE H5T REAL }

– Regular node-centered data over ”Boxes”

– Indexing the n’th component at node [i,j,k] in the b’th box:

– val = NRegular[NOffsets[b]+n*((sizei+1)*(sizej+1)*(sizek+1)) +k*((sizej+1)*(sizei+1))+j*(sizei+1)+i]

• DATASET "VOffsets" { DATATYPE H5T UINT }

– Offset into DATASET "VOFs" and DATASET "CIrregular" per box

• DATASET "VOFs" { DATATYPE H5T VOF*D }

– All VOFs stored in box-contiguous form
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– This dataset always has a single layer of ghost cells.

• DATASET "CIrregular" { DATATYPE H5T REAL }

– contains NumC data values per irregular VOF

– indexing the i’th component of the j’th irregular VOF of the b’th Box

– val = irregular[NumC*(VOffsets[b]+j) + i]

• DATASET "FOffsets" { DATATYPE H5T LLONG }

• DATASET "XRegular" { DATATYPE H5T REAL }

– Regular x-face centered data over ”Boxes”

– Indexing the n’th component at face [i,j,k] in the b’th box:

– val = XRegular[FOffsets[b]+n*((sizei+1)*sizej*sizek)+k*((sizej)* (size1+1))+j*(sizei+1)+i]

• DATASET "XFaceOffsets" { DATATYPE H5T UINT }

– Offset into DATASET "XFaces" and "XIrregular"

• DATASET "XFaces" { DATATYPE H5T FACE*D }

– ”hiVol” and ”loVol” are local to this box. To index the n’th component of
”hiVol” associated with i’th xface of the b’th box:

– val = CIrregular[NumC*(VOffsets[b] + (XFaceOffsets[b] + i).hiVol) + n]

• DATASET "XIrregular" { DATATYPE H5T REAL }

– to access the n’th data component associated with the i’th xface of the b’th
box

– val = XIrregular[(XFaceOffsets[b]+i)*NumX + n]

• repeat DATASETs "XRegular" "XFaceOffsets" "XFaces" "XIrregular" for Y
and Z faces

– indexing requires the extra +1 for the direction in question

1.8.3 I/O API

1.9 Usage Patterns

Here we present the usage patterns of the concepts presented in section 1.4. We
present an initialization pattern and a calculation pattern along with an example of a
GeometryService class.
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1.9.1 Creating a GeometryService Object

We show the important SlabService class functions. This class specifies that a
Box in the domain is covered and all other cells are full. It has one data member,
Box m_coveredRegion, which specifies the covered region of the domain.

/******************/

bool

SlabService::isRegular(const Box& a_region,

const Box& domain,

const RealVect& a_origin,

const Real& a_dx) const

{

Box interBox = m_coveredRegion & a_region;

return (interBox.isEmpty());

}

/******************/

/******************/

bool

SlabService::isCovered(const Box& a_region,

const Box& domain,

const RealVect& a_origin,

const Real& a_dx) const

{

return (m_coveredRegion.contains(a_region));

}

/******************/

/******************/

void

SlabService::fillEBISBox(EBISBox& a_ebisRegion,

const Box& a_region,

const Box& a_domain,

const RealVect& a_origin,

const Real& a_dx) const

{

//for some reason, g++ is not letting classes derived

//from friends be friends so I have to use the end-around

ebisBoxClear(a_ebisRegion);

Box& implem_region = getEBISBoxRegion(a_ebisRegion);

Box& implem_domain = getEBISBoxDomain(a_ebisRegion);

EBISBoxImplem::TAG& implem_tag = getEBISBoxEnum(a_ebisRegion);

Vector<Vector<Vol> >& implem_irregVols = getEBISBoxIrregVols(a_ebisRegion);

IntVectSet& implem_irregCells= getEBISBoxIrregCells(a_ebisRegion);

BaseFab<int>& implem_typeID = getEBISBoxTypeID(a_ebisRegion);

//don’t need this one---no multiply valued cells here.

IntVectSet& implem_multiCells= getEBISBoxMultiCells(a_ebisRegion);
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implem_multiCells.makeEmpty();

implem_region = a_region;

implem_domain = a_domain;

Box interBox = m_coveredRegion & a_region;

if(interBox.isEmpty())

{

implem_tag = EBISBoxImplem::AllRegular;

}

else if(m_coveredRegion.contains(a_region))

{

implem_tag = EBISBoxImplem::AllCovered;

}

else

{

implem_tag = EBISBoxImplem::HasIrregular;

implem_typeID.resize(a_region, 1);

//set all cells to regular

implem_typeID.setVal(-1);

//set to covered over intersection of two boxes.

implem_typeID.setVal(-2, interBox, 0, 1);

//set cells next to the covered region to irregular

for(int idir = 0; idir < SpaceDim; idir++)

{

Box loSideBox = adjCellLo(m_coveredRegion, idir);

Box hiSideBox = adjCellHi(m_coveredRegion, idir);

Vector<Box> boxesToDo(2);

boxesToDo[0] = loSideBox;

boxesToDo[1] = hiSideBox;

for(int ibox = 0; ibox < boxesToDo.size(); ibox++)

{

const Box& thisBox = boxesToDo[ibox];

Box iterBox = (thisBox & a_region);

if(!iterBox.isEmpty())

{

BoxIterator bit(iterBox);

for(bit.reset(); bit.ok(); ++bit)

{

const IntVect& iv =bit();

Vol newVol;

newVol.m_volFrac = 1.0;

//all irregular cells have only one vof in this EBIS

VolIndex thisVoF= getVolIndex(iv, 0);

newVol.m_index = thisVoF;

//loop through face directions
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for(int jdir = 0;jdir < SpaceDim; jdir++)

{

//only add faces in the directions

//that are not covered.

// all areafracs are unity

IntVect loiv = iv - BASISV(jdir);

IntVect hiiv = iv + BASISV(jdir);

Real areaFrac = 1.0;

if(!m_coveredRegion.contains(loiv))

{

VolIndex loVoF= getVolIndex(loiv, 0);

FaceIndex loface;

if(a_domain.contains(loiv))

{

loface=getFaceIndex(loVoF, thisVoF,jdir);

}

else

{

loface=getFaceIndex(thisVoF, jdir, Side::Lo);

}

newVol.m_loFaces[jdir].push_back(loface);

newVol.m_loAreaFrac[jdir].push_back(areaFrac);

}

if(!m_coveredRegion.contains(hiiv))

{

VolIndex hiVoF= getVolIndex(hiiv, 0);

FaceIndex hiface;

if(a_domain.contains(hiiv))

{

hiface=getFaceIndex(hiVoF, thisVoF,jdir);

}

else

{

hiface=getFaceIndex(thisVoF, jdir, Side::Hi);

}

newVol.m_hiFaces[jdir].push_back(hiface);

newVol.m_hiAreaFrac[jdir].push_back(areaFrac);

}

}//end inner loop over face directions

implem_irregCells |= iv;

//trick.standard.

implem_typeID(iv, 0) = implem_irregVols.size();

//add the new volume to the ebis

implem_irregVols.push_back(Vector<Vol>(1,newVol));

}//end loop over cells of box
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} //end (is the edge box in a_region)

}//end loop over boxes on the outside of covered box in dir

} // end loop over directions

} //end if(a_region intersects covered region)

}

1.9.2 Creating Data Holders and Geometric Information

To start a calculation, first the EBIndexSpace is created and the geometric description is
fixed. The DisjointBoxLayouts are then created for each level and the corresponding
EBISBoxes are then generated. Data holders over the levels are created using a factory
class.

int NFine; //finest grid size

int NLevels; // number of refinement levels

...

Box domain(IntVect::Zero, (NFine-1)*IntVect::Unit);

createMyGeometry(ebis);

Vector<DisjointBoxLayout> allGrids;

Vector<int> refRatios;

Vector<Box> domains;

Real dxfine;

createMyGrids(NLevels,refRatios,allGrids, domains, dxfine );

EBIndexSpace ebis(domain);

Vector<EBISLayout*> vec_ebislayout(NLevels);

//maximum number of ghost cells I will ever use (this includes

//temporary arrays).

int maxghost = 4;

EBIndexSpace* ebisPtr = Chombo_EBIS::instance();

RealVect origin = RealVect::Zero;

MyGeometryService mygeom;

ebisPtr->define(domain, origin, dxfine, mygeom);

for(int ilevel = 0; ilevel < NLevels; ilevel++)

{

//domain used to match correct level of refinement

//for the ebis. The layout box grown by the number

//of ghost cells determines how large each EBISBox in

//the EBISLayout is.

vec_ebislayout[ilevel] = new EBISLayout();

ebisPtr->fillEBISLayout(*vec_ebislayout[ilevel],

allGrids[ilevel],

domains[ilevel], maxghost);
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}

//now define the data in all its LevelData splendor

Vector<LevelData<EBCellFAB>* > allDataPtrs(NLevels, NULL);

int nVar = 10;

for(int ilevel = 0; ilevel < NLevels; ilevel++)

{

const EBISLayout& levelEBIS = vec_ebislayout[ilevel];

const DisjointBoxLayout& levelGrids = allGrids[ilevel];

EBCellFABFactory ebfact(levelEBIS);

allDataPtrs[ilevel] =

new LevelData<EBCellFAB>(levelGrids,

nVar, maxghost*IntVect::Unit, ebfact);

defineMyInitialData(*allDataPtrs[ilevel], domains[ilevel]);

}

1.9.3 Finite Difference Calculations using EBChombo

Here we present our calculation usage pattern with EBChombo. The regular part of the
data holder is extracted and sent to a Fortran routine using Chombo Fortran macros. In
the second step, we do the irregular VoFs pointwise.

/***********************/

/***********************/

void

EBPoissonOp::applyOp(LevelData<EBCellFAB >& a_lofPhi,

LevelData<EBCellFAB >& a_phi,

const bool& a_isHomogeneous)

{

a_phi.exchange(a_phi.interval());

//loop over grids.

for(DataIterator dit = a_phi.dataIterator(); dit.ok(); ++dit)

{

applyOpGrid(a_lofPhi[dit()], a_phi[dit()], dit(), a_isHomogeneous);

} //end loop over grids

}

/***********************/

/***********************/

void

EBPoissonOp::applyOpGrid(EBCellFAB& a_lofPhi,

const EBCellFAB& a_phi,

const DataIndex& a_datInd,

bool a_isHomogeneous)

{

//set value of lphi to zero then loop through
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//directions, adding the 1-D divergence of the

//flux in each direction on each pass.

a_lofPhi.setVal(0.);

const EBISBox& ebisBox = m_ebisl[a_datInd];

for(int idir = 0; idir < SpaceDim; idir++)

{

const BaseFab<Real>& regPhi = a_phi.getRegFAB();

BaseFab<Real>& regLPhi = a_lofPhi.getRegFAB();

const Box& regBox = m_grids.get(a_datInd);

assert(regPhi.box().contains(regBox));

assert(regLPhi.box().contains(regBox));

Box interiorBox = m_domain;

interiorBox.grow(idir, -1);

Box calcBox = (regBox & interiorBox);

FORT_INCREMENTLAP(CHF_FRA(regLPhi),

CHF_CONST_FRA(regPhi),

CHF_BOX(calcBox),

CHF_CONST_INT(idir),

CHF_CONST_REAL(m_dxLevel));

SideIterator sit;

for(sit.reset(); sit.ok(); ++sit)

{

Box bndrybox, cellbox;

bool isboundary = false;

int iside = sign(sit());

if(sit() == Side::Lo)

{

isboundary = (regBox.smallEnd(idir) ==

m_domain.smallEnd(idir));

bndrybox = bdryLo(regBox, idir);

cellbox = adjCellLo(regBox, idir);

cellbox.shift(idir, 1);

}

else

{

isboundary = (regBox.bigEnd(idir) ==

m_domain.bigEnd(idir));

bndrybox = bdryHi(regBox, idir);

cellbox = adjCellHi(regBox, idir);

cellbox.shift(idir, -1);

}
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if(isboundary)

{

//now the flux is CELL centered

BaseFab<Real> flux(cellbox, 1);

for(BoxIterator bit(cellbox); bit.ok(); ++bit)

{

const IntVect& iv = bit();

Vector<VolIndex> vofs = ebisBox.getVoFs(bit());

Real fluxval = 0.0;

for(int ivof = 0; ivof < vofs.size(); ivof++)

{

const VolIndex& vof = vofs[ivof];

const BaseFunc& bdata =

getDomBndryData(idir, sit(), a_datInd);

const FluxBC& fluxbc = m_domfluxbc(idir,sit());

//domfluxbc stuff is already multiplied

//by face area*areafrac

fluxval =fluxbc.applyFluxBC(vof, 0, ebisBox, a_phi,

bdata, a_isHomogeneous);

}

flux(iv, 0) = fluxval;

} //end loop over boundary box

//this makes the flux face centered

flux.shiftHalf(idir, iside);

FORT_INCRLINELAP(CHF_FRA(regLPhi),

CHF_CONST_FRA(regPhi),

CHF_BOX(cellbox),

CHF_CONST_INT(idir),

CHF_CONST_INT(iside),

CHF_CONST_REAL(m_dxLevel));

FORT_BOUNDARYLAP(CHF_FRA(regLPhi),

CHF_CONST_FRA(flux),

CHF_CONST_FRA(regPhi),

CHF_BOX(bndrybox),

CHF_CONST_INT(idir),

CHF_CONST_INT(iside),

CHF_CONST_REAL(m_dxLevel));

}//end is boundary

}//end loop over sides

}//end loop over directions

//do irregular cells. this includes boundary conditions

//also redo cells next to boundary
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IntVectSet ivsIrreg = m_irregRegions[a_datInd];

for(VoFIterator vofit(m_irregRegions[a_datInd], ebisBox);

vofit.ok(); ++vofit)

{

a_lofPhi(vofit(), 0) = applyOpVoF(vofit(), a_phi, a_datInd,

a_isHomogeneous);

}

}

1.10 Landmines

This section is indended to point out some of the uses of EBChombo that will result in
errors that can be difficult to detect.

1.10.1 Data Holder Architecture

For performance reasons, BaseEBFaceFAB and BaseEBCellFAB both hold all their single-
valued data in dense arrays and multi-valued data in irregular arrays. Note that this is
distinct from regular and irregular cells. This makes data access much faster but it also
provides (at current count) three traps for the unwary.

1.10.1.1 Update-in-Place difficulties

If one naively follows the standard EBChombo usage pattern for updating a quantity in
place, one will probably

• Update the regular data in Fortran.

• Update irregular data in C++

• Figure out much later that the single-valued irregular cells have been updated twice.

To avoid this, one can store her state before the update starts and use this stored state
to update the irregular cells properly.

1.10.1.2 Norms and other Agglomerations of Data

Say one wants to compute a maximum of the wave speed of her data over a particular
box. The naive implementation that simply calls Fortran for all single-valued calls and
then loops over all multivalued cells in C++ can have undefined behavior. Any cell in
the BaseFab that underlies a multivalued cell has undefined values. We recommend that
such an operation be done pointwise in C++.
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1.10.1.3 Stencil Size and Data Holders

By fiat we have defined that regular cells are those cells who have unit area fractions and
unit volume fraction. We also define to be irregular any full cell that borders a multivalued
cell. This allows stencils that extend only one extra cell (in each direction) in Fortran. If
one uses a wider stencil, she risks updating in Fortran valid regular data with invalid data
that underlies multivalued cells.

1.10.2 Sending Irregular Data to Fortran

If one indends to send irregular data (BaseIFFAB or BaseIVFAB) to Fortran, she must
understand that the Box arguments that have been sent to Fortran are artificial. The Box
is just a construct to provide Fortran with the correct size of the data. The actual indicies
of the data in no way correspond to the data locations on the grid. This has two very
important implications.

• Irregular data holders of different sizes will not be able to interact in Fortran. The
indicies of data in the same VoF will not be the same for the two data holders.

• Only pointwise operations on data are well-defined. Any kind of finite difference-type
operation in Fortran for irregular data holders will result in undefined behavior.
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Chapter 2

Using The Divergence Theorem for
Geometry Generation

To construct more complex irregular boundaries, implicit functions can be composed into
more complex implicit functions using constructive solid geometry, CSG. To do this, it
is necessary to define the complement, intersection, and union of irregular domains, Ωi,
defined by implicit functions, φi. This is done using the following correspondences:

Ωcomplement
i ⇔ −φi

Ωintersection ⇔ max
i
φi

Ωunion ⇔ min
i
φi

Further, coordinate transformations, ψ, of Ω can be implemented as:

Ωψ = {x : x ∈ R
D, φ(ψ−1(x)) < 0}

Examples of ψ include rotations, translations, and scaling. In addition to being straight-
forward to implement using implicit functions, CSG is a very robust and intuitive method
for building complex geometry objects and easily manipulating them (see figure 2.1).

Once constructed, only the value of the implicit function representing the irregular do-
main and its derivatives need to be evaluated in order to compute the necessary moments.
This allows the embedded boundary method to perform efficiently even on workstations.

If good estimates of the bounds of the local Taylor series expansion of the implicit
functions are available, these can be used to dramatically improve performance by sub-
dividing space recursively and only evaluating the implicit function where an irregular
boundary could exist, i.e., regions where φ(x) could be zero. Thus, the amount of work
done is proportional to the number of cells containing the irregular boundary and not the
entire space. This also allows cells with under resolved geometry to be detected and cor-
rected by adaptively refining these cells. This has been found to occur routinely when the
higher dimension irregular domains are restricted to lower dimensions, e.g., slices of a well
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Figure 2.1: Domains generated via constructive solid geometry and multiple implicit func-
tions, (a) Borromean (interlocked) rings, (b) Gas jet nozzle

resolved unit sphere can be circles with arbitrarily small radii. Once adequate refinement
has been done, either the computation can use the refined computational cells or they
can be coarsened to provide the moments at the original resolution.

We use implicit functions to represent the interface. Image data, digital elevation
maps, and analytic expressions provide important examples of implicit functions. Con-
structive solid geometry applied to these examples greatly enlarges the set of possibilities,
helping, for example, to represent man-made interfaces, which frequently are a combi-
nation of numerous simpler interfaces. In section ??, we describe a data structure that
encapsulates a small but sufficient set of point evaluations of the implicit function and
its gradients at several locations within a control volume and a data structure that holds
moments over multiple dimensions. The use of templates and associative arrays facilitates
some recursive aspects of our algorithm that we describe below. Moments and ratios of
moments are subject to obvious constraints: volume can’t be negative and centroids lie
within the convex hull, for example. Specific applications may require further constraints.
Section ?? descibes the formal construction of an overdetermined linear system, the in-
gredients of which are the divergence theorepm and a Taylor approximation to the vector
normal to the interface. The solution vector estimates all the moments of a given order
over a given control volume as well as moments of one higher order over the interface.
The accuracy of the estimate depends on dimension, the order of the moment, and the
accuracy of the Taylor approximation.

We wish to estimate moments on the discretization of an irregular domain, Ω, defined
implicitly using an “implicit” function, φ : RD → R, i.e.:

Ω = {x : x ∈ R
D, φ(x) < 0} (2.1)
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and
Ω0 = {x : x ∈ R

D, φ(x) = 0} (2.2)

Typically, Ω will be discretized on a set of control volumes, V , formed by intersecting
rectangular cells with Ω and Ω0:

V = {[ih, (i+ u)h] ∩ Ω : i ∈ Z
D} (2.3)

where u ∈ Z
D and all its components are one and h is the size of the rectangular cells.

Implicit function representations have several advantages:

• The implicit function, φ(x), is defined everywhere in R
D and thus Taylor expansions

of φ and functions of φ (e.g., n(x) = ∇φ(x)/|∇φ(x)|) can be computed anywhere
they exist if φ is smooth enough.

• Implicit functions can be used to represent a rich set of geometric shapes through
analytic expressions, interpolants of discrete, sampled data, or through constructive
solid geometry.

• Implicit functions can be easily restricted to lower dimensions, which is useful for
our recursion.

• Implicit functions can be extended to arbitrary dimensions allowing computations
to be done in phase spaces or space-time.

• Ω can implicitly evolve in time if φ is allowed to change with time.

2.0.3 Constructive Solid Geometry

Simpler implicit functions can be composed into more complex implicit functions using
constructive solid geometry, CSG. To do this, it is necessary to define the complement,
intersection, and union of irregular domains, Ωi, defined by implicit functions, φi. This is
done using the following correspondences:

{x : x /∈ Ωi} ⇔ −φi

{x : x ∈ ∪iΩi} ⇔ max
i
φi

{x : x ∈ ∩iΩi} ⇔ min
i
φi

Further, coordinate transformations, ψ, of Ω can be implemented as:

Ωψ = {x : x ∈ R
D, φ(ψ−1(x)) < 0}

Examples of ψ include rotations, translations, and scaling.
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Chapter 3

Layer 2–EBAMRTools

3.1 Introduction

This document is meant to discuss the different components of the EBAMRTools compo-
nent of the EBChombo infrastructure for embedded boundary, block-structured adaptive
mesh applications. The principal operations that these tools execute are as follows:

• Average a level’s worth of data onto the next coarser level.

• Interpolate in a piecewise-linear fashion data from a coarser level to a finer level.

• Fill ghost cells at a coarse-fine interface with a second-order interpolation between
the coarse and fine data.

• Fill ghost cells at a coarse-fine interface with data interpolated using a bilinear
interpolation.

• Preserve multi-level conservation using refluxing.

• Redistibute mass differences between stable and conservative schemes.

After a discourse on the notational difficulties of embedded boundaries, we will discuss
our algorithm for each of these tasks.

3.2 Notation

All these operations take place in a very similar context to that presented in [4]. For
non-embedded boundary notation, refer to that document. The standard (i, j, k) is not
sufficient here to denote a computational cell as there can be multiple VoFs per cell. We
define v to be the notation for a VoF and f to be a face. The function ind(v) produces
the cell which the VoF lives in. We define v+(f) to be the VoF on the high side of face f ;
v−(f) is the VoF on the low side of face f ; f+

d (v) is the set of faces on the high side
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of VoF v; f−
d (v) is the set of faces on the low side of VoF v, where d ∈ {x, y, z} is a

coordinate direction (the number of directions is D). Also, we compose these operators
to represent the set of VoFs directly connected to a given VoF: v+d (v) = v+(f+

d (v)) and
v−
d (v) = v−(f−

d (v)). The << operator shifts data in the direction of the right hand
argument:

(φ << ed)v = φv+
d
(v) (3.1)

We follow the same approach in the EB case in defining multilevel data and operators
as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmaxl=0 , we define the valid
VoFs on level l to be

V lvalid = ind−1(Ωl
valid) (3.2)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmaxl=0 , ϕl,valid : V lvalid → R
m (3.3)

For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)
~F l,valid = (F l,valid

0 , . . . , F l,valid
D−1 )

F l,valid
d : F l,d

valid → R
m

(3.4)

3.3 Conservative Averaging

Assume that there are two levels of grids Ωc,Ωf , with data defined on the fine grid and
on the valid region of the coarse grid

ϕf : ind−1(Ωf ) → Rϕc,valid : ind−1(Ωc
valid) → R (3.5)

We assume that Cr(Ω̃
f )∩ Γc ⊂ Ωc. We want to replace the coarse data which is covered

by fine data with the volume-weighted average of the fine data. This operator is used
to average from finer levels on to coarser levels, or for constructing averaged residuals in
multigrid iteration. We define the volume weighted average

ϕcvc
= Av(ϕf , nref )vc

Av(ϕf ) = 1
V c

∑
vf∈F

V fϕvf

F = C−1
nref

(vc)

(3.6)

3.4 Interpolation Operations

3.4.1 Piecewise Linear Interpolation

This method is primarily used to initialize fine grid data after regridding. Given a level
array ϕc on Ωc, we want to compute Ipwl(ϕ) defined on an Ωf properly nested in Ωc. For
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the values on C(Ω̃f ), interpolate in a piecewise-linear fashion in space, using the values ϕ̃c

(we assume that the coarse data already contains the average of the fine data as discussed
in the last section).

ϕfvf
= ϕ̃cvc

+
D−1∑
d=0

(
(ind(vf )d+

1
2
)

nref
− ind(vc) +

1
2
))∆d · ϕcvc

where vc ∈ ind
−1(Ω̃f − Ωf )

vc = Cnref
(vf ).

(3.7)

The slopes ∆d are computed using minmod limiting as shown below:

∆dWvc
= δminmod(Wvc

)|δL(Wvc
)|δR(Wvc

)|0
δL(Wvc

) = Wvc
− (W n

v<<−ed
)

δR(Wvc
) = (W n

v<<ed
)−Wvc

(3.8)

δminmod =

{
min(|δL|, |δR|) · sign(δL + δR) if δL · δR > 0
0 otherwise

}
(3.9)

The shift operator (denoted by <<) is defined using a simple average of connected values.

3.4.2 Piecewise-Linear Coarse-Fine Boundary Interpolation

In the next algorithm, we use the same linear interpolant but we also interpoalte in
time between levels of time. We have the solution on the coarser level of refinement
at two time levels, tCold and tCnew. We want to compute an extension ϕ̃f of ϕf on
Ω̃f = G(Ωf , p) ∩ Γf , p > 0 that exists at time level tF where tCold < tf < tCnew. We
assume that Cr(Ω̃

f ) ∩ ΓcCΩc. Extend ϕc,valid to ϕc, defined on all of ind−1(Ωc).

ϕcvc
= Av(ϕf , nref )vc

,vc ∈ ind
−1Cnref

(Ωf ) (3.10)

At both tCold and tCnew, for the values on Ω̃f−Ωf compute a piecewise linear interpolant,
using the values ϕ̃c.

ϕ̃fvf
= ϕ̃fvc

+
D−1∑
d=0

(
(ind(vf )d+

1
2
)

nref
− (ind(vc) +

1
2
))∆d · ϕcvc

where vc ∈ ind
−1(Ω̃f − Ωf ),

vc = Cnref
(vf ).

(3.11)

The slopes ∆d are computed using minmod limiting as shown in equation 3.9. We then
interpolate in time between the new and old interpolated values.

ϕfvf ,tF
= ϕ̃fvf ,tCold

+
tF − tCold

tCnew − tCold
(ϕ̃fvf ,tCnew

− ϕ̃fvf ,tCold
) (3.12)

This process should produce an interpolated value which has second-order error in both
time and space.
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3.4.3 Quadratic Coarse-Fine Boundary Interpolation

Away from locations where the embedded boundary crosses the coarse-fine interface, we
use the algorithm in [4].

To proceed from here we need to define the corner ghost cells region. Say we have
two levels of refinement. Define Ωf as that region covered by the finer level. Define Λf

to be the problem domain at the finest refinement. Define Gd to be the grow operation
that only grows a region in the coordinate direction d. Define the grow operator G to
be the operator which grows a region by one cell in all coordinate directions. In three
dimensions, this is

G(Ω, 1) ≡ G1(G2(G3(Ω, 1), 1), 1)

The coarse-fine layer of ghost Ωcf cells is defined to be

Ωcf,f = (G(Ωf , 1)− Ωf ) ∩ Λf

The ghost cells which are not coners Ωe can be obtained by shifting Ωf along coordinate
directions:

Ωe, f = (
D⋃

d=1

Gd(Ωf , 1)− Ωf ) ∩ Λf

The corner ghost cells Ωp are defined to be

Ωp = Ωcf − Ωe

Define C to be the pointwise coarsening operation and r to be the refinement ratio. We
define the coarse-fine interface set on the coarse level Ωcf,c to be the coarse cells which
underly the fine ghost cells.

Ωcf,c = C(Ωcf,f , r)

Because of proper nesting requirements, we claim that Ωe,c = C(Ωe,f , r) and Ωp,c =
C(Ωc,f , r) do not intersect and Ωcf,c = Ωe,c ∩ Ωp,c.

We use the Johansen stencil for Dirichlet EB boundary conditions away from the
coarse-fine boundary. When any VoF of the Johansen stencil is within a ghost cell on
the coarse-fine interface, we drop to the least-squares stencil which has a smaller. The
least-squares stencil still requires corner ghost cells be filled. In the absence of coarse-fine
interfaces intersecting embedded boundaries, we only need to fill ghost cells which were
not corners Ωe. Since we are proposing to allow this intersection, we must interpolate to
all of Ωcf .

3.4.3.1 Interpolation to non-corner ghost cells Ωe,f

Away from points where the coarse-fine interface, we interpolate using QuadCFInterp. It
uses one-sided differences to avoid using coarse data under finer data. See the AMRTools
section of the Chombo design document for details. Though that is somewhat ideologically

50



inconsistent with the following strategy near embedded boundaries, we feel that, as a
proven technology, QuadCFInterp should be left alone.

This section deals only with quadratic interpolation near where the coarse-fine in-
terface crosses the embedded boundary design document. The functional change from
QuadCFInterp here is that we only need to do one-sided difference when covered cells
are near. Because we are doing higher-order averaging to fill coarse data that is under
finer data (see section 3.7.0.1), we can allow the coarse-fine interpolation stencil to reach
under finer grids.

We present the natural extension of the regular grid description to embedded bound-
aries of quadratic coarse-fine interpolation. For each coordinate direction d, we compute
values of φ in the set Ωe,f

d = (Gd(Ωf , 1) − Ωf ) ∩ Λf . Define the “valid” parts of the
domain to be the parts of the domain whose volume fractions are greater than zero.

Ωc,valid
i = {i : i ∈ Ωc and κi > 0}

To perform this interpolation, we first observe that, given i ∈ Ω̃f
k − Ωf , there is a

unique choice of ± and d, such that i ∓ ed ∈ Ωf
k . Having specified that choice, the

interpolant is constructed in two steps

(i) Interpolation in the direction orthogonal to ed. We compute

x =
i+ 1

2
u

r
− (ic +

1

2
u)

where ic = Cr(i). The real-valued vector x is the displacement of the cell center i on the
fine grid from the cell center at ic on the coarse grid, scaled by hc.

ϕ̂i = ϕcic +
∑

d′ 6=d

[(
xd′(D

1,d′ϕc)ic +
1

2
(xd′)

2(D2,d′ϕc)ic
)
+

∑

d′′ 6=d,d′′ 6=d′

xd′xd′′(D
d′d′′ϕc)ic

]

The second sum has only one term if D = 3, and no terms if D = 2.

(ii) Interpolation in the normal direction.

ϕ̃i = IBq (ϕ
f , ϕc,valid) ≡ 4a+ 2b+ c , x̃d = xd −

1

2
(r + 3)1

where a, b, c are computed to interpolate between the collinear data

((i±
1

2
(nlref − 1)ed)h, ϕ̂i),

((i∓ ed)h, ϕli∓ed
),

((i∓ 2ed)h, ϕli∓2ed)
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In (i), the quantities D1,d′ϕc, D2,d′ϕc and Dd′d′′ϕc are difference approximations to
∂

∂xd′
, ∂2

∂x2
d′
, and ∂2

∂xd′∂xd′′
, respectively. D1,dϕ must be accurate to O(h2), while the other

two quantities need only be O(h). The strategy for computing these quantities is to
use only values in Ωc

valid to compute these difference approximations. For the case of
D1,d′ϕ,D2,d′ϕ, we use 3-point stencils, centered if possible, or shifted as required to
consist of points on Ωc

valid.

(D1,d′ϕ)i =





1
2
(ϕc

i+ed
′ − ϕc

i−ed
′ ) if both i± ed

′
∈ Ωc

valid

±3
2
(ϕc

i±ed
′ − ϕci)∓

1
2
(ϕc

i±2ed
′ − ϕc

i±ed
′ ) if i± ed

′
∈ Ωc

valid, i∓ ed
′
6∈ Ωc

valid

0 otherwise

(D2,d′ϕ)i =





ϕc
i+ed

′ − 2ϕci + ϕc
i−ed

′ if both i± ed
′
∈ Ωc

valid

ϕci − 2ϕc
i±ed

′ + ϕc
i±2ed

′ if i± ed
′
∈ Ωc

valid, i∓ ed
′
6∈ Ωc

valid

0 otherwise

x

x

Figure 3.1: Mixed-derivative approximation illustration. The upper-left corner is covered
by a finer level so the mixed derivative in the upper left (the uncircled x) has a stencil
which extends into the finer level. We therefore average the mixed derivatives centered on
the other corners (the filled circles) to approximate the mixed derivatives for coarse-fine
interpolation in three dimensions.

In the case of Dd′d′′ϕc, we use an average of all of the four-point difference approxi-
mations ∂2

∂xd′∂xd′′
centered at d′, d′′ corners adjacent to i such that all four points in the

stencil are in Ωc
valid (Figure 3.1)

(Dd′d′′

cornerϕ
c)i+ 1

2
ed

′
+ 1

2
ed

′′ =

{
1
h2
(ϕi+ed

′
+ed

′′ + ϕi − ϕi+ed
′ − ϕi+ed

′′ ) if [i, i+ ed
′
+ ed

′′
] ⊂ Ωc

valid

0 otherwise
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(D2,d′d′′ϕc)i =

{
1

Nvalid

∑
s′=±1

∑
s′′=±1(D

d′d′′ϕc)i+ 1
2
s′ed

′
+ 1

2
s′′ed

′′ if Nvalid > 0

0 otherwise

where Nvalid is the number of nonzero summands. To compute (ii), we need to compute
the interpolation coefficients a b, and c.

a =
ϕ̂− (r · |xd|+ 2)ϕi∓ed + (r · |xd|+ 1)ϕi∓2ed

(r · |xd|+ 2)(r · |xd|+ 1)

b = ϕi∓ed − ϕi∓2ed − a

c = ϕi∓2ed

3.4.3.2 Interpolation to corner ghost cells

We now discuss how we fill data on Ωp,f the ghost cells over the coarse fine interface
which cannot be reached from a single move in a coordinate direction. Define D to be the
set of directions which have the requisite number of uncovered, single-valued cells from
a corner cell i. It is clear from the location of the corner which direction one needs to
extrapolate from.

Di = {d : κi±e > 0 and κi±2e > 0 and κi±3e > 0}

We also exclude from D any directions with a multivalued cell in the stencil. We define
ND to be the number of directions contained in D.

φi =
1

ND

∑

d∈D

3(φi±ed − φi±2ed) + φi±3ed

We must exercise some care here to ensure that our algorithm is independent of how we
divide our region into rectangles. For this reason, after we do the above extrapolation, we
do a cornerCopier exchange operation to fill corner cells that are covered by ghost cells
of a neighboring fine grid. Finally we do an ordinary exchange operation to fill any ghost
cells which are covered by the valid fine grid.

3.5 Redistribution

To preserve stability and conservation in embedded boundary calculations, we must redis-
tribute a quantity of mass δM (the difference between stable and conservative updates)
from irregular VoFs to their neighbors. This mass is normalized by hD where h is the
grid spacing on the level. We define ηv to be the set of neighbors (no farther away than
the redistribution radius) which can be reached by a monotonic path. We then assign
normalized weights to each of the neighbors v

′
and divide the mass accordingly:

δMv =
∑

v
′∈ηv

wv,′κv′δMv (3.13)
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where ∑

v
′∈ηv

wv,v
′κv′ = 1 (3.14)

We then update the solution U at the neighboring cells v
′

U l
v
′ += wv,v

′δM l
v. (3.15)

This operation occurs at all v ∈ ind
−1(Ωl) without regard to valid or invalid regions.

If the irregular cell is within the redistribution radius of a coarse-fine interface, we must
account for mass that is redistributed across the interface.

3.5.1 Multilevel Redistribution Summary

We begin with δM l
v,v ∈ ind

−1Ωl, the redistribution mass for level l.
Define the redistribution radius to be Rr. We define the coarsening operator to be

CNref
and the refinement operator to be C−1

Nref
. We define the “growth” operator to

be G. The operator which produces the ZD index of a vof is ind and the operator to
produces the VoFs for points in ZD is ind−1.

If v is part of the valid region, the redistribution mass is divided into three parts,

δM l
v = δ1M l

v + δ2M l,l+1
v + δ2M l,l−1

v ,
v ∈ ind

−1(Ωl,valid).
(3.16)

δ1M l
v is the part of the mass which is put onto the Ωl,valid. δ2M l,l+1

v is the part of the
mass which is redistributed to Ωl ∩CNref

(Ωl+1) (the part of the level covered by the next
finer level). δM l,l−1

v is the part of the mass which is redistributed off level l.
If v is not part of the valid region, the redistribution mass is divided into two parts,

δM l
v = δIM l

v + δM l,l
v

v ∈ ind
−1(Ω− Ωl,valid).

(3.17)

δIM l
v is the portion of δlM l

v which is redistributed to other invalid VoFs of level l.
δIMP l, lv is the portion of δlM l

v which is redistributed to valid VoFs of level l and must
be removed later from the solution.

We must account for δM l,l−1
v , δ2M l,l+1

v and δ3M l,l
v to preserve conservation. δ2M l,l+1

v

is added to the level l + 1 solution. δ2M l,l−1
v is added to the level l − 1 solution. δ3M l,l

v

is removed from the level l solution.

3.5.2 Coarse to Fine Redistribution

The mass going from coarse to fine is accounted for as follows. Recall that the mass we
store is normalized by hDc where hc is the grid spacing of the level of the source. Define hf
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to be the grid spacing of the destination. For all VoFs vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)−
Ωl+1)), we define the coarse-to-fine redistribtuion mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind

−1(CNref
(Ωl+1)).

(3.18)

Define ζ2
v′

c
to be the unnormalized mass that goes to VoF v′

c
. We distribute this mass to

the VoFs v′

f
that cover v′

c
(v′

f
∈ C−1

Nref
(v′

c
)) in a volume-weighted fashion.

ζ2
v′

c
= hDc wvc,v

′

c
κv′

c
δM l

vc

ζ2
v′

f
=

κ
v′
f
hD
f

κchDc
ζ2
v′

c

ζ2
v′

f
= κv′

f
hDf wvc,v

′

c
δM l

vc

(3.19)

The change in the fine solution is the given by

δU l+1
v′

f
=

ζ2
v′
f

κ
v′
f
hD
f

= δM l
vc
wvc,v

′

c

U l+1
v′

f
+= δM l

vc
wvc,v

′

c

vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1))
v′

c
= ηvc

∩ ind
−1(CNref

(Ωl+1))
v′

f
∈ C−1

Nref
(v′

c
)

(3.20)

This can be interpreted as a piecewise-constant interpolation of the solution density.

3.5.3 Fine to Coarse Redistribution

The mass going from fine to coarse is accounted for as follows. Recall that the mass we
store is normalized by hDf where hf is the grid spacing of the level of the source. Define

hc to be the grid spacing of the destination. For all VoFs vf ∈ ind
−1(Ωl−G(Ωl,−Rr)),

we define the fine-to-coarse redistribtuion mass δ2M l,l−1 to be

δ2M l,l−1
vf

=
∑

v′

f
∈Q(vf )

δM l
vf
wvf ,v

′

f
κv′

f

Q(vf ) = ηvf
∩ ind

−1(C−1
Nref

(Ωl−1)− Ωl).
(3.21)

For all VoFs vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1)), we define the coarse-to-fine redis-
tribtuion mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind

−1(CNref
(Ωl+1)).

(3.22)
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Define ζ2
v′

f
to be the unnormalized mass that goes to VoF v′

f
. We distribute this mass to

the VoF v′

c
= CNref

(v′

f
).

ζ2v′

f
= ζ2v′

c
= hDf wvf ,v

′

f
κv′

f
δM l

vf
(3.23)

We define δU l−1
v′

c
to be the change in the coarse solution density due to δwMvf ,v

′

f
:

δU l−1
v′

c
=

ζ2
v′
f

κ
v′c
hDc

(3.24)

Substituting from above, we increment the coarse solution as follows

U l−1
v′

c
+=

κ
v′
f

κ
v′c
ND

ref

δM l
vf
wvf ,v

′

f

vf ∈ ind
−1(Ωl −G(Ωl,−Rr)),

v′

f
∈ ηvf

∩ ind
−1(C−1

Nref
(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(3.25)

3.5.4 Coarse to Coarse Redistribution

The re-redistribution algorithm proceeds as follows. Given v ∈ ind
−1(CNref

(Ωl+1), we
define the re-redistribution mass δ3Ml, l to be

δ3M l,l
v =

∑
v
′∈T (v)

δM l
vwv,v

′κv′

T (v) = ηv ∩ ind
−1(Ωl).

(3.26)

In the level redistribution step, we have added this mass to the solution density using
equation 3.15. Re-redistribution is the process of removing it so that the solution is not
modified by invalid regions

U l
v
′ −= δM l

vwv,v
′

v ∈ ind
−1(CNref

(Ωl+1))
(3.27)

3.6 Refluxing

First we describe the refluxing algorithm which, along with redistribution, preserves con-
servation at coarse-fine interfaces. The standard refluxing algorithm Given a level vector
field F on Ω, we define a discrete divergence operator D as follows:

κv(D · ~F ) = 1
h
(
D−1∑
d=0

(
∑

f∈F+
d
(v)

αf F̃f −
∑

f∈F−
d
(v)

αf F̃f ) + αBv F
B
v )

F̃f = Ff +
∑

d:d 6=dir(f)

|xf ,d|(Ff<<sign(xf ,d)ed − Ff ),
(3.28)
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where κv is the volume fraction of VoF v and αf is the area fraction of face f . Equation
3.28 consists of a summation of interpolated fluxes and a boundary flux. The flux inter-
polation is discribed in [10]. Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector

field. We want to define a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We

do this by extending F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by Ff

valid.

< F f
d >fc= 1

(nref )(D−1)

∑
f∈C−1

nref
(fc)

αfF
f
d

f c ∈ ind
−1(i+ 1

2
ed), i+ 1

2
ed ∈ ζfd,+ ∪ ζfd,−

ζfd,± = {i± 1
2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref
(Ωf )}

(3.29)

Then we can define (D · ~F )v,v ∈ Vcvalid, using the expression above, with F̃f =< F f
d >

on faces covered by Ff . We can express the composite divergence in terms of a level
divergence, plus a correction. We define a flux register δ ~F f , associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF f
d : ind−1(ζfd,+ ∪ ζfd,−) → R

m
(3.30)

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F c,valid

d on F c,d
valid then

for v ∈ Vcvalid
Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F

c)v (3.31)

Here δ ~F f is a flux register, set to be

δF f
d =< F f

d > −αfcF c
d on ind

−1(ζcd,+ ∪ ζcd,−) (3.32)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ωf it is given by

κv(DRδ ~F
f )v =

D−1∑

d=0

(
∑

f :v=v+(f)

δF f
d,f −

∑

f :v=v−(f)

δF f
d,f ) (3.33)

For the remaining vofs in Vfvalid,

(DRδ ~F
f ) ≡ 0 (3.34)

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF ))v (3.35)

At coarse cells which are also irregular, this leaves unaccounted-for the quantity of mass
δMRef given by

δMRef = (1− κv)(DR(δF ))v (3.36)

This mass must be redistributed to preserve conservation:

δMRef,c
v =

∑

v
′∈ηv−C(Vl,valid)

κv′wv,v
′δMRef,c

v (3.37)
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We increment the solution in the neighboring VoFs with their portion of δMRef :

U c
′ += κv′wv,v

′δMRef,c
v

v
′
∈ ηv − C(Vf,valid)

(3.38)

Time steps and other factors have been absorbed into the definition of δM . Unfortunately,
we are not finished. In equation 3.38, some of the mass will be going back onto the fine
grid

δMRR,c += δMRef
∑

v
′∈ηv−Vc,valid

κvwv,v
′ (3.39)

This mass must be accumulated at each fine time step. When the fine level has caught
up with the coarse level in time, we adjust the fine solution to account for this mass:

U f

C−1(v
′
)
+= wv,v

′δMRR,c
v

v
′
∈ ηv − Vf,valid

(3.40)

3.7 Subcycling in time with embedded boundaries

We use the subcycling-in-time algorithm specified by Berger and Oliger [2] to advance
an AMR solution in time. Embedded boundary synchronization substantially complicates
Berger-Oliger timestepping. Here we present an overview of Berger-Oliger subcycling in
time for adaptive mesh refinement in the context of embedded boundaries. Say we are
solving the hyperbolic system of equations

∂U

∂t
+∇ · F = 0 (3.41)

in a domain discretized as described above. Here is an outline of the Berger-Oliger
algorithm for this equation. First we perform the steps required to preserve stability and
conservation in the presence of embedded boundaries.

• Compute fluxes F l on F .

• Compute the conservative and non-conservative solution updates (DC(F l) and
DNCC(F l)).

• Update the solution on the level:

Unew,l
v = U old,l

v −∆t(κDNC(F l)v + (1− κ)DC(F l)v), v ∈ ind
−1(Ωl) (3.42)

• Initialize redistribution mass δM l to be the mass left out in the previous step.

δM l
v = ∆tκv(1− κv)(D

NC(F l)v −DC(F l)v)
v ∈ ind

−1I l
(3.43)
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• Perform level redistribution of δM l:

Unew,l

v
′ += wv,v

′δM l
v

v
′
∈ {ηv ∩ ind

−1(Ωl)}∑
v
′∈ηv

wv,v
′κv′ = 1

(3.44)

Second we perform the steps required to preserve conservation across coarse-fine inter-
faces. We define δF to be flux registers and δ2M to be redistribution registers.

• We increment the flux register between this level and the next coarser level.

δF l,l−1
f += < F l >f ∆tl

f ∈ ∂(C(F l−1))
(3.45)

• We initialize the flux register between this level and the next finer level.

δF l+1,l
f =< F l >f ∆tl

f ∈ ∂(F l+1)
(3.46)

• Increment redistribution registers between this level and the next coarser level.

δ2M l,l−1
v = δM l

vv ∈ ind
−1(I l) (3.47)

• Initialize redistribution registers with next finer level and the coarse-coarse (“re-
redistribution”) registers. for v ∈ ind

−1(I)l

δ2M l,l+1
v = δM l

v

δ2M l,l
v = −δM l

v

δ2M l+1,l
v = 0

(3.48)

• Advance level l + 1 solution to time tnew,l (requires a minimum of nref time steps.

• Reflux a portion of the flux difference in equation 3.46 and save the extra mass into
the appropriate redistribution register.

Unew,l
v += κDR(δF

l+1)v
δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v

δ3M l,l
v += κv(1− κv)DR(δF

l+1)v

(3.49)

• Redistribute mass that was redistributed (in both directions) across coarse-fine in-
terfaces.

U l+1
v′

f
+= δ2M l,l+1

vc
wvc,v

′

c

vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1))
v′

c
= ηvc

∩ ind
−1(CNref

(Ωl+1))
v′

f
∈ C−1

Nref
(v′

c
)

(3.50)
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U l−1
v′

c
+=

κ
v′
f

κ
v′c
ND

ref

δ2M l,l−1
vf

wvf ,v
′

f

vf ∈ ind
−1(Ωl −G(Ωl,−Rr)),

v′

f
∈ ηvf

∩ ind
−1(C−1

Nref
(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(3.51)

• Re-redistribute mass that was redistributed from invalid regions.

U l
v
′ −= δ3M l,l

v wv,v
′

v ∈ ind
−1(CNref

(Ωl+1))
(3.52)

• Finally average down the finer solution where appropriate

Unew,l
v =< Unew,l+1 >, v ∈ ind

−1CNref
(Ωl + 1) (3.53)

3.7.0.1 O(h3) Averaging

The stencil for Dirichlet EB boundary condtions on a coarse level can reach under the
fine level. Because of this, we need to average φ from the finer level to the coarser level
before evaluating Lφ. We use a higher-order (O(h3)) averaging operator because we need
a more accurate value at a coarse location than averaging the fine values which cover the
coarse cell would produce. Martin and Cartwright discuss this in detail. The standard
averaging operator is second order accurate and the truncation error analysis works such
that to avoid making O(1) errors in the laplacian on coarse cells near the fine grid, we
need a third order estimate of the solution on regions covered by finer grids. We therefore
use a modified averaging operator in which we eliminate term of the truncation error of
the standard averaging operator. Consider a coarse cell at ~ic. The coarse cell is covered
by fine cells and the refinement ratio is two, the fine grid spacing is hf and the coarse
grid spacing is hc. Suppose we have a smooth function φe which exists at all points in
space. Away from coarse-fine interfaces, the Laplacian is discretized in the standard way.
In two dimensions, this discretization is:

(Lφ)i,j =
1

h2
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j) (3.54)

and in three dimensions

(Lφ)i,j =
1

h2
(φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k + φi,j,k+1 + φi,j,k−1 − 6φi,j,k) (3.55)

At the coarse-fine interface, we interpolate values onto ghost cells which surround the
union of rectangles that correspond to the level’s domain and use equation 3.54 to calcu-
late the Laplacian. We define the standard averaging operator AS in two dimensions to
be

(AS(φ
e))(hc~ic) =

1

4




φe(hf if , hfjf )+
φe(hf (if + 1), hfjf )+
φe(hf if , hf (jf + 1))+
φe(hf (if + 1), hf (jf + 1))


 (3.56)
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and in three dimensions to be

(AS(φ
e))(hc~ic) =

1

8




φe(hf if , hfjf , hfkf )+
φe(hf (if + 1), hfjf , hfkf )+
φe(hf if , hf (jf + 1, ), hfkf )+
φe(hf (if + 1), hf (jf + 1), hfkf )+
φe(hf if , hfjf , hf (kf + 1))+
φe(hf (if + 1), hfjf , hf (kf + 1))+
φe(hf if , hf (jf + 1), hf (kf + 1))+
φe(hf (if + 1), hf (jf + 1), hf (kf + 1))




(3.57)

where ~if = 2~ic. The truncation error τ of AS is given by

τ = φe(hc~ic)− (AS(φ
e))(hc~ic) =

h2f
2
∇2φe(hc~ic) +O(h3f ) (3.58)

Away from the embedded boundary, we define the modified averaging operator AM to be
AS with the leading order in the truncation error subtracted off:

(AM(φf ))~ic = AS(φf )~ic −
h2f
2
L(φf )~ic (3.59)

Near the embedded boundary, we extrapolate to O(h2) from fine cells to the coarse cell
and average the result.

3.8 EBAMRTools User Interface

This section describes the various classes which implement the various algorithms described
in the above section.

3.8.1 Classes EBCoarseAverage/EBCoarsen

The EBCoarseAverage class is used to average from finer levels on to coarser levels, or
for constructing averaged residuals in multigrid iteration. It averages fine data to coarse
in a volume-weighted way (see equation 3.6). This class uses copying from one layout
to another for communication. This class has as data a scratch copy of the data at the
coarse level. The averaging operator is blocking due to the copy. EBCoarsen does the
same thing with the same interface, but averages to O(h3) and is not conservative. The
important functions of the EBCoarseAverage/EBCoarsen classes are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,
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const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
average function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void average(LevelData<EBCellFAB>& coarData,

const LevelData<EBCellFAB>& fineData,

const Interval& variables);

Average the fine data onto the coarse data over the intersection of the coarse layout
with the coarsened fine layout.

– coarData: The data over the coarse layout.

– fineData: The data over the fine layout. Fine and coarse data must have the
same number of variables.

– variables: The variables to average. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

3.8.2 Class EBPWLFineInterp

The EBPWLFineInterp class is used to interpolate in a piecewise-linear fashion coarse
data onto fine layouts (see equation 3.7). This is primarily a useful class for regridding. It
contains stencils and slopes over the coarse level and uses copy for communication. This
makes its interpolate function blocking. The important functions of EBPWLFineInterp
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.
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– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarData,

const Interval& variables);

Interpolate the fine data from the coarse data over the intersection of the fine layout
with the refined coarse layout.

– fineData: The data over the fine layout.

– coarData: The data over the coarse layout.

– variables: The variables to interpolate. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

3.8.3 Class EBPWLFillPatch

Given coarse data at old and new times, during subcycling in time, we need to interpolated
ghost data onto a fine data set at a time between the old and new coarse times. The
EBPWLFillPatch class is used to interpolate fine data over the ghost region that is not
covered by other fine grids. Data is simply copied from other fine grids where it is available.
Only one layer of ghost cells is filled.

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.
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• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarDataOld,

const LevelData<EBCellFAB>& coarDataNew,

const Real& coarTimeOld,

const Real& coarTimeNew,

const Real& fineTime,

const Interval& variables);

Interpolate the indicated fine data variables from the coarse data on ghost cells which
overlay a coarse-fine interface. Copy fine data onto ghost cells where appropriate
(using LevelData::exchange). Only one layer of ghost cells is filled.

– fineData: The data over the fine layout.

– coarDataOld, coarDataNew: The data over the coarse layout at the old and
new times. Fine and coarse data must have the same number of variables.

– coarTimeOld, coarTimeNew: The values of the old and new time of the
coarse data. The old time must be smaller than the new time.

– fineTime: The time at which the fine data exists. This time must be between
the old and new coarse time.

3.8.4 Class RedistStencil

The RedistStencil class holds the stencil at every irregular VoF in a layout. The default
weights that the stencil holds are volume weights. The class does allow the flexibility to
redefine these weights. The weights correspond to wv,v′ in equations 3.37 and 3.44.

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& redistRadius);

Define the internals of the RedistStencil class.

– dbl: The layout of the data.

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.
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– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• const BaseIVFAB<VoFStencil>&

operator[] (const DataIndex& datInd) const

Returns the redistribution stencil at every irregular point in input Box associated
with this DataIndex.

3.8.5 Class EBLevelRedist

The EBLevelRedist class performs mass redistibution in an embedded boundary context.
The algorithm for this is described in section 3.5. At irregular cells in a level described
by a union of rectangles, mass to be redistibuted is stored incrementally (one Box at a
time, with a ghost width equal to the redistribution radius). EBLevelRedist is then used
to increment a solution by the stored redistribution mass. The redistribution radius is a
constant static member of the class. The important functions of EBLevelRedist are as
follows:

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& nvar)

Define the internals of the EBLevelRedist class. Buffers are made at every irregular
cell including ghost buffers at a width of the redistribution radius. Sets values at all
buffers to zero.

– dbl: The layout of the data.

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void storeMass(const BaseIVFAB<Real>& massDiff,

const DataIndex& datInd,

const Interval& variables);
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Store the input mass difference in the internal buffers of the class by incrementing
the buffer with the mass difference.

– massDiff: Conserved values to store in registers.

– datInd: The index of the Box in the input DisjointBoxLayout to which
massDiff corresponds].

– variables: The variables to store. These must fit within zero and the number
of variables input to the define function.

• void setToZero();

Set the internal buffer to zero.

• void redistribute(LevelData<EBCellFAB>& solution,

const Interval& variables);

Redistribute the data contained in the internal buffers Uv′ += wv,v′δMv.

– solution: Solution to increment.

– variables: The variables to increment.

3.8.6 Class EBFluxRegister

The EBFluxRegister class performs refluxing in an embedded boundary context. The
algorithm for this is described in section 3.6. The important functions of EBFluxRegister
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the EBFluxRegister class. Buffers are made at every
irregular cell including ghost buffers at a width of the redistribution radius. Sets
values at all buffers to zero.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.
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• void setToZero();

Set the registers to zero.

• void incrementCoarseRegular(

const EBFaceFAB& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

void incrementCoarseIrregular(

const BaseIFFAB<Real>& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

Increments the register with data from coarseFlux, multiplied by scale (α):
δF f

d +=αF
c
d , for all of the d-faces where the input flux (defined on a single rectangle)

coincide with the d-faces on which the flux register is defined. coarseFlux con-
tains fluxes in the dir direction for the grid dblCoar[coarsePatchIndex]. Only
the registers corresponding to the low faces of dblCoarse[coarsePatchIndex]
in the dir direction are incremented (this avoids double-counting at coarse-coarse
interfaces. of the flux register.

– coarseFlux : Flux to put into the flux register. This is not const because
its box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply coarseFlux in flux register.

– coarsePatchIndex : Index which corresponds to the box in the coarse solu-
tion from which coarseFlux was calculated.

– variables : The components to put into the flux register.

– dir : Direction of the faces upon which the fluxes live.

• void incrementFineRegular(

const EBFaceFAB& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,

const int& dir,

const Side::LoHiSide& sd);

void incrementFineIrregular(

const BaseIFFAB<Real>& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,
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const int& dir,

const Side::LoHiSide& sd);

Increments the register with the average over each face of data from fineFlux,
scaled by scale (α): δF f

d +=α < F f
d >, for all of the d-faces where the input flux

(defined on a single rectangle) cover the d-faces on which the flux register is defined.
fineFlux contains fluxes in the dir direction for the grid dbl[finePatchIndex].
Only the register corresponding to the direction dir and the side sd is initialized.
srcInterval and dstInterval are as above.

– fineFlux : Flux to put into the flux register. This is not const because its
box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply fineFlux in flux register.

– finePatchIndex : Index which corresponds to which box in the LevelData<FArrayBox>
solution from which fineFlux was calculated.

– variables : The Interval of components of the flux register into which the
flux data is put.

– dir : Direction of faces upon which fluxes live.

– sd : Side of the fine face where coarse-fine interface lies.

• void reflux(LevelData<EBCellFAB>& uCoarse,

const Interval& variables,

const Real& scale);

Increments uCoarse with the reflux divergence of the contents of the flux register,
scaled by scale (α): U c += αDR(δ ~F ).

– uCoarse : The solution that gets modified by refluxing.

– variables: gives the Interval of components of the flux register that cor-
respond to the components of uCoarse.

– scale : Factor by which to scale the flux register.

• void incrementRedistRegister(EBCoarToFineRedist& register,

const Interval& variables);

Increments redistribution register with left-over mass from reflux divergence as in
equation 3.49: δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v.

– register: Coarse to fine register that must be incremented (δ2M l,l+1).

– variables: Array indicies to be incremented.
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3.8.7 Class EBCoarToFineRedist

The EBCoarToFineRedist class stores and redistributes mass that must move from the
coarse solution to the fine solution The important functions of EBCoarToFineRedist are
as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& coarPatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in the second
part equation 3.49.

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the coarse grid.
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– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& fineSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l+1
vf +=wv,v′δ2M l,l+1

v , vf ∈
C−1
nref (v)

– fineSolution: Solution to increment.

– variables: The variables to increment.

3.8.8 Class EBFineToCoarRedist

The EBFineToCoarToRedist class stores and redistributes mass that must go from the
fine to the coarse grid. The important functions of EBFineToCoarRedist are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.
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• void increment(BaseIVFAB<Real>& fineMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in fineMass as shown in equation
3.49.

– fineMass: The mass difference to add to the register.

– finePatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += wfcv,v′δ2M l+1,l

v

– fineSolution: Solution to increment.

– variables: The variables to increment.

3.8.9 Class EBCoarToCoarRedist

The EBCoarToCoarToRedist class stores and redistributes mass that was redistributed
to the coarse grid that is covered by the fine grid and now must be corrected. This is the
notorious “re-redistribution” process. The important functions of EBCoarToCoarRedist
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.
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– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in equation
3.49.

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += wv,v′δ2M l,l

v

– coarSolution: Solution to increment.

– variables: The variables to increment.

3.8.10 Class EBQuadCFInterp

This class interpolates to ghost cells over the coarse-fine interface with O(h3) error.

• EBQuadCFInterp(const DisjointBoxLayout& a_dblFine,

const DisjointBoxLayout& a_dblCoar,

const EBISLayout& a_ebislFine,

const EBISLayout& a_ebislCoar,

const ProblemDomain& a_domainCoar,

const int& a_nref,

const int& a_nvar,

const LayoutData<IntVectSet>& a_cfivs);

Define the interpolation object.

• void

interpolate(LevelData<EBCellFAB>& a_fineData,

const LevelData<EBCellFAB>& a_coarData,

const Interval& a_variables);

Interpolate to the ghost cells of the fine data to O(h3).
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Chapter 4

Layer 3—EBAMRElliptic

4.1 Introduction

This document is to briefly explain the workings of the EBAMRElliptic implementation.
First, the algorithm is explained. Here we extend the AMR multigrid algorithm of Martin
and Cartwright [13] to embedded boundaries using the results of Johansen and Colella
[10], [11]. Second, we document the implementation of the EBAMRElliptic software in
detail, trying wherever possible to draw the connections from the software to the algorithm
specification. We shall describe the algorithm in both two and three dimensions.

We are going to present two examples. For both, we are given a bounded domain
Ω and a charge density distribution ρ which exists over all of Ω and we are given a
boundary condition for the solution is given on ∂Ω. We discretize the domain with a
block-structured, adaptive mesh.

In the first example, we solve Poisson’s equation

∇ · (∇φ) = ρ (4.1)

for φ. In the second example, we present

4.2 Poisson’s equation

This section describes the method for solving the elliptic partial differential equation

L(φ(~x)) = ρ(~x) (4.2)

on a Cartesian grid embedded boundary mesh, for the special case of Poisson’s equation,
in which

L(φ(~x)) = ∇2φ(~x) (4.3)

is the Laplacian. This algorithm is largely an extension of that developed by Johansen
and Colella [10] combined with the AMR multigrid algorithm of Martin and Cartwright
[13].
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4.2.1 Operator Discretization

4.2.1.1 Notation

To suppress the use (i, j, k) notation, we define: v+(f) to be the VoF on the high side
of face f ; v−(f) to be the VoF on the low side of face f ; f+

d (v) to be the set of faces
on the high side of VoF v; f−

d (v) to be the set of faces on the low side of VoF v,
where d ∈ {x, y, z} is a coordinate direction (the number of directions is D). Also, we
compose these operators to obtain the set of VoFs directly connected to a given VoF:
v+d (v) = v+(f+

d (v)) and v
−
d (v) = v−(f−

d (v)).
Barred variables, such as x̄v or x̄f , are distances from the center of the grid cell

containing v or of the grid face containing f , respectively, that have been normalized by
the grid spacing h. Typically, −1

2
≤ (̄·) ≤ 1

2
.

4.2.1.2 Interior Method

The Laplacian of φ is defined in three stages: compute the grid-centered gradient of
φ, recenter the gradient, and compute the divergence of recentered gradient. The face-
centered gradient of φ is defined as

g̃df =
1

h

(
φv+(f) − φv−(f)

)
(4.4)

The gradients at the irregular face centroids gdf are computed by interpolation using a
modification of the Johansen-Colella method. Interpolation is done in the D− 1 dimen-
sional, linear subspace which contains the irregular face. In 2D, this is a line and, in 3D,
this is a plane. If possible, multilinear interpolation is done using the face-centered gradi-
ents whose locations bound the centroid of the irregular face. Multilinear interpolation is
possible if all the face-centered gradients needed can be used (see below for the definition
of “can be used” in this context). If multilinear interpolation is not possible then the g̃df
is used at the irregular face centroid, i.e., piecewise constant interpolation.

By the divergence theorem, the integral of the Laplacian of φ over a VoF is equal to
the integral around the boundary of the VoF of the gradient of φ. Discretizing the integral
with the midpoint rule yields the approximation

Lv(φ) =
1

κvh


 ∑

f∈f+
d
(v)

αfg
d
f −

∑

f∈f−
d
(v)

αfg
d
f − αEBv

(
~gEBv ·n̂EBv

)

 (4.5)

where κv is the volume fraction of a VoF v, αf is the area fraction of face f , and αEBv is
the area fraction of the embedded boundary of the VoF. The superscript EB, in general,
refers to quantities associated with the segment of the embedded boundary within a VoF.
The calculation of (~gBv · n̂Bv ), the normal gradient of φ at the boundary, is described in
section 4.2.1.3. In regions of the grid where all VoFs and faces involved are regular, no
recentering of the gradient is required and there is no contribution from the embedded
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Figure 4.1: Illustration of the 5-point Laplacian stencil in two dimensions.

boundary. In this case equation 4.4 gives the gradient at the VoF face and this method
reduces to the familiar star-shaped direction-split stencil for the Laplacian:

Lv(φ) =
1

h2

(
D−1∑

d=0

φv+
d
(v) − 2φv + φv−

d
(v)

)
. (4.6)

See figure 4.1 for a graphical version of the stencil in two dimensions.
Now we define when a face-centered gradient “can be used” in the context of com-

puting the gradient at the centroid of an irregular face. For each direction d′ 6= d, we
define two sets of VoFs,

v−d′ = v±(f±
d′ ((v

−(f)))

v+d′ = v±(f±
d′ ((v

+(f))) (4.7)

where the choice of sign is the sign of x̄d
′

f , the normalized centroid of f in the d′ direction.
Basically, we take the VoF on each side of f (in the d direction), find all faces connected
to that VoF in the low or high, ±, d′ direction, and then collect all the VoFs connected
to the other side of these faces.

Now, construct the set of faces that are shared by a VoF in v−d′ and a VoF in v+d′ .
If there is one such face, it is f ′(d′). If there are no faces or more than one face then
gdf = g̃df , i.e., drop order.

4.2.1.3 Boundary Conditions

There are two distinct type of boundaries: faces which lie on the boundary of the solution
domain, and embedded boundary segments which are contained within a VoF. See fig-
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embedded boundary segments

boundary faces

boundary faces

Figure 4.2: Boundary faces and embedded boundary segments.

ure 4.2. Discretization of homogeneous Dirichlet and Neumann boundary conditions are
described for each type of boundary face. Homogeneous Neumann boundary conditions
are defined by setting the appropriate gradient to zero. Homogeneous Dirichlet boundary
conditions are more involved.

4.2.1.4 Homogeneous Dirichlet Boundary Condition at Faces

For a boundary face f normal to d, the normal gradient depends on whether the solution
domain is on the high side (+) of f or on the low side (−) of f . The gradient is

g̃df = ±
1

h
(3φv − φ1/3) (4.8)

where
v = v±(f) (4.9)

is the first VoF in the solution domain, and

φ1 =

∑

f ′∈f±
d
(v)

ℓf ′φv±(f ′)

∑

f ′∈f±
d
(v)

ℓf ′
(4.10)

is the face-area-averaged value of the solution in the set of VoFs in the second cell inward
in the solution domain that are directly connected to the VoF v. An example is shown
in figure 4.3. In the figure, the solution domain is on the high side of the face f . The
set of VoFs v+(f ′) is shaded gray. Note that the crosshatched VoF is in the same cell as
v+(f ′), but does not participate in the average.
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Figure 4.3: VoFs and faces for Dirichlet boundary condition at a boundary face.
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Figure 4.4: Dirichlet boundary condition at embedded boundary segment. Stencil for
quadratic interpolation. Interpolate values from cell centers (+) to intersection points
(◦). Gradient at boundary segment centroid (•) is found by differencing values at the ◦s.
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4.2.1.5 Homogeneous Dirichlet Boundary Condition at Embedded Boundary
Segments

For an embedded boundary segment, the gradient normal to the segment is found by
casting a ray normal to the segment into the solution domain. See figure 4.4. The

ray
−−−−−→

BCD is cast from the centroid of the embedded boundary face B in VoF v. Note
that, in this example, n̂Bv,x ≥ n̂Bv,y ≥ 0. If this inequality does not hold, the problem
is transformed into a different coordinate system in which it does hold by means of
coordinate swaps and reflections. The direction that transforms to x is called the major
coordinate. Unless otherwise specified, the rest of this discussion is in terms of the
transformed coordinate system.

Planes are constructed normal to x through the centers of cells near v. We then find
the intersection of the ray with the two planes that are closest to but do not intersect v.
In the figure, the intersection points are C, the closer point, and D, the further point.
We will first describe the method assuming all the cells necessary are regular except
this one containing the embedded boundary. We locate the centers of the cells these
intersections are within, C0 and D0, and the centers of the neighbor cells of each in the
same intersection plane, C+ and C−, and D+ and D−, respectively (in three dimensions,
there are eight neighbors each, C++, C+0, C+−, etc.). Values at C and D are found by
quadratic interpolation. In two dimensions,

φC = N+(ȳC)φC+ +N0(ȳC)φC0 +N−(ȳC)φC− (4.11)

and similarly for φD, where
ȳCh = yC − yC0 (4.12)

and the interpolation functions are

N+(ξ) = 1
2
ξ (ξ + 1)

N0(ξ) = 1− ξ2 (4.13)

N−(ξ) = 1
2
ξ (ξ − 1) .

If the major coordinate were y, then y would be replaced by x in equation 4.11.
With the values φC and φD known, the gradient at B normal to the embedded bound-

ary segment is
(
~gBv ·n̂

B
v

)
=
nBv,x
h

(
2− x̄B

1− x̄B
φC −

1− x̄B

2− x̄B
φD

)
(4.14)

where x̄Bh = xB − iBh is the x-component of the distance from the centroid of the
embedded boundary face B to the center of the cell it is in. The terms nBv,x and x̄B are
associated with the major coordinate.

Note that the value of the solution at a VoF v does not affect the value of the gradient
at B, and therefore does not contribute to the Laplacian at v via this boundary condition.
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Figure 4.5: Quadratic approximation of C in three dimensions. We interpolate in each
plane then interpolate along ray.
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Figure 4.6: Dirichlet boundary condition at embedded boundary segment. Stencil for
least-squares fit. Left:: typical situation. Right:: nearly degenerate situation.

The method just described can be extended to the case where the cells are not all
regular. Define V oF 0 to be the VoF containing the current embedded boundary. Let
V oF 1 be the set of VoFs connected to V oF 0 via the face the normal first intersects
(what is done if the normal intersects an edge or corner is described below). Note, all the
VoFs, V oF 1, will lie in one cell, Cell1. Continuing in this fashion, let V oF 2 be the set
of all the VoFs connected to a VoF in V oF 1 via the second face the normal intersects
and they will all lie in Cell2. Observe that one of the Celli will be the cell that C lies
in, C0, and one will be the cell that D lies in, D0. Call these cells CellC and CellD,
respectively. Now, the set of VoFs corresponding to these cells, V oFC and V oFD, may
or may not be empty. If V oFC is empty then we approximate the gradient at B normal
to the embedded boundary by 0. If V oFC is not empty but V oFD is empty we will use
linear interpolation to compute the value a C

If the cells containing C and D, described above, are not regular or are part of a
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coarse-fine interface, a different method is used to approximate the normal gradient. The
gradient also can be found by a least-squares minimization method. See figure 4.6. Note
that the components of the normal in this example are positive. If they are not, the
problem is transformed via coordinate swaps into a coordinate system in which they are.
We wish to find the normal gradient at B, the centroid of an embedded boundary face, in
a VoF v. The details depend on the dimensionality of the problem. The two-dimensional
case is described first.

In two dimensions, we select three cells adjacent to v’s cell, two directly adjacent and
one diagonally adjacent. The centers of these cells are the points P1,0, P0,1 and P1,1.
Note that the points P1,0 etc. are always the centers of the cells, even if a cell is irregular.
We then do a least-squares fit on the gradients in the directions BP0,1, BP1,0 and BP1,1

(which are known) to determine the components of the full vector gradient (φBx , φ
B
y ).

Figure 4.6 also shows the need for a least-squares fit, rather than a coordinate trans-
formation. On the left of the figure is the situation if the volume of v is not small. In this
situation, the gradients in the directions BP1,0 and BP0,1 are linearly independent, so it is
possible to compute the full gradient from them alone. On the right is the situation in the
degenerate case in which the volume of v is small (and the normal n̂Bv is not aligned with
the grid). The point B is almost at the corner of the grid cell, directly between P1,0 and
P0,1. Thus, the gradients in the directions BP1,0 and BP0,1 are not linearly independent,
and a full gradient cannot be computed from them alone.

The overdetermined system we need to approximate is

φ1,0 − φB =
(
x1,0 − xB

)
φBx +

(
y1,0 − yB

)
φBy

φ0,1 − φB =
(
x0,1 − xB

)
φBx +

(
y0,1 − yB

)
φBy

φ1,1 − φB =
(
x1,1 − xB

)
φBx +

(
y1,1 − yB

)
φBy (4.15)

or, with x̄h = x − iBh, and replacing x̄1,0 etc. with the actual values (which are always
either unity or zero because P1,0 etc. are cell centers),

A g = ∆Φ (4.16)

where

∆Φ =





φ1,0 − φB

φ0,1 − φB

φ1,1 − φB



 , A =




1− x̄B −ȳB

−x̄B 1− ȳB

1− x̄B 1− ȳB


h, g =

{
φBx
φBy

}
. (4.17)

Note that φB = 0. The least-squares approximation to equation 4.16 is the solution g to

M g = b (4.18)

where
M = A

T
A, b = A

T∆Φ. (4.19)
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Figure 4.7: VoFs in the least-squares stencil. The VoFs v0, v1, v2 and v4 are in the stencil
for the gradient at B.

The normal gradient is then
(
~gBv ·n̂

B
v

)
= n̂Bv ·g = nBv,xφ

B
x + nBv,yφ

B
y (4.20)

If any of the cells containing a point P1,0 etc. are irregular and contain multiple VoFs,
we use for the value φ at that cell’s center the volume-weighted average of the values of φ
in the set of VoFs in that cell which are correctly connected to the VoF v. Note that the
appropriate set of VoFs for the diagonal neighbor P1,1 is the set of VoFs in that cell that
are connected to the appropriate VoFs in both the cells of P1,0 and P0,1. See figure 4.7.
In the figure, the VoFs v0, v1 and v2 are in the stencil because they are directly connected
to v. The VoF v3 is in an adjacent cell, but is not connected to v. We call the set of
VoFs {v0, v1} the x-neighbors of v and the set of VoFs {v2} the y-neighbors of v. Of the
VoFs in the diagonally adjacent cell, the VoF v4 is in the stencil because it is connected
both to an x-neighbor of v (namely v0), and to a y-neighbor of v (namely v2); the VoF v5
is excluded because it is connected neither to an x-neighbor nor a y-neighbor of v; and
the VoF v6 is excluded because, although it is connected to an x-neighbor of v (namely
v1), is is not connected to any y-neighbor.

In three dimensions, we need four equations to form an overdetermined system for
three components of the full vector gradient. We use the directional gradients from B
to each of four cell centers. The cells are the three directly adjacent cells and one cell
that is diagonally adjacent in the plane through v’s cell that is normal to the direction
in which the component of the normal n̂Bv is the least. See figure 4.8. In the figure,
nBv,x > nBv,y > nBv,z, so that the fourth point is P1,1,0, the center of the cell in the same
xy-plane as the center of v’s cell. We now have

A g = ∆Φ (4.21)
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Figure 4.8: Least-squares stencil for three dimensions. The centroid of the embedded
boundary face is the •. The centers of the neighbor cells for the least-squares approxima-
tion are the +s.

where

∆Φ =





φ1,0,0 − φB

φ0,1,0 − φB

φ0,0,1 − φB

φ1,1,0 − φB




, A =




1− x̄B −ȳB −z̄B

−x̄B 1− ȳB −z̄B

−x̄B −ȳB 1− z̄B

1− x̄B 1− ȳB −z̄B


h, g =





φBx
φBy
φBz





(4.22)
which is approximated similarly to the two-dimensional case.

Again, the value of the solution at a VoF v does not affect the value of the gradient
at B, and therefore does not contribute to the Laplacian at v via this boundary condition.

4.2.2 Relaxation Method

The relaxation method is based on Gauss-Seidel iteration with red-black ordering (GSRB) [].
The VoFs are divided into three sets: irregular VoFs, and two sets of regular VoFs, red
and black, such that every black VoF is adjacent only to red and irregular VoFs, and
every red VoF is adjacent only to black and irregular VoFs. One iteration consists of the
following steps:

• update the solution at the black VoFs,

• update the solution at the red VoFs,

• update the solution at the irregular VoFs Nirreg times, where Nirreg > 0 is an
adjustable parameter.
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The solution at a VoF is updated by incrementing it with

δφv = αv (ρv − Lv (φ)) (4.23)

where αv is a relaxation coefficient designed to annihilate the diagonal terms of the
differential operator Lv(φ). It is constructed by applying the operator to a delta function
and taking the inverse,

1

αv
= Lv (δv) (4.24)

where

δv (~x) =

{
1 if ~x is within v
0 otherwise

(4.25)

The operator Lv must include the face boundary conditions (see section 4.2.1.4), but does
not require the embedded boundary segment boundary conditions (see section 4.2.1.5)
because in the latter the contribution to the operator at the VoF v does not depend on
the value of the solution at v.

4.2.3 Multigrid Algorithm

Multigrid is a method for the acceleration of convergence of iterative schemes for elliptic
and parabolic equations. It involves the creation of a sequence of coarser grids on which
a coarser problem is solved. A procedure is also specified for transferring solution data
between grids of different resolution. For solving a linear problem, we use the residual-
correction form of multigrid. One multigrid cycle consists of the following sequence of
steps:

• perform Npre iterations of the relaxation procedure

• restrict residual from this grid to the next coarser grid:

ρ2h = I2hh
(
ρh − Lh(φh)

)
(4.26)

• perform Ncycles multigrid cycles on the coarser grid to solve

L2h(φ2h) = ρ2h (4.27)

• interpolate correction from the next coarser grid to this grid:

eh = Ih2h
(
φ2h
)

(4.28)

• increment solution on this grid with the correction eh

• perform Npost iterations of the relaxation procedure
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If Ncycles = 1, the method is called a V-cycle; if Ncycles = 2, the method is called a
W-cycle; other values of Ncycle are unusual.

Something about bottom solves.
We use the sequence of coarse grids produced by EBIndexSpace’s coarsening algo-

rithm. A grid has half the resolution of the finer grid from which it was created, and the
volumes of VoFs and areas of faces are “conserved,”

Λv =
1

2D

∑

v′∈refine(v)

Λv′

ℓf =
1

2D−1

∑

f ′∈refine(f)

Λf ′ . (4.29)

Data is transferred to a coarser grid by a volume-weighted average restriction opera-
tor I2hh , defined as

φv =
1

2DΛv

∑

v′∈refine(v)

Λv′φv′ . (4.30)

Data is transferred to a finer grid by piecewise-constant interpolation operator Ih2h.
Because we are using the residual-correction form of multigrid, all boundary conditions

on the coarser grids are homogeneous.

4.2.4 Projection discretization

We define the conservative divergence approximation of a flux ~F

D(~F )v =
1

hκv
((

D∑

d=1

(αi+ 1
2
edF̃

d
i+ 1

2
ed − αi− 1

2
edF̃

d
i− 1

2
ed) + αBv F

B
v ) (4.31)

We need to define two types of projection. The first, a so called “MAC” projection
is used to extract the divergence-free component of a velocity field. The second, referred
to here as a “cell- centered” projection operator, is used to extract the divergence-free
component of a cell-centered velocity field.

We define the face-centered gradient of a cell-centered scalar φ to be the ordinary
second-order accurate finite-difference approximation in the normal direction and the av-
erage of neighboring normal gradients in other directions,

Gmac(φ)df =
1

h
(φv+(f) − φv−(f)),

and for d′ 6= d

Gmac(φ)d
′

f =
1

NG

∑

f ′∈Gd′,d

(Gmac(φ)d
′

f ′).
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Where Gd
′,d is the set of faces in the d′ direction who contain one control volume in f and

NG is the number of faces in this set. On a regular grid, G is the set of four neighboring
faces in the d′ direction. We define our discrete Laplacian operator to be the conservative
divergence of the face-centered gradient,

L ≡ DGmac

Our MAC projections are defined to be

Pmac ≡ (I −Gmac(L−1)D)

Qmac ≡ (I − Pmac)

Operationally, we first solve the discrete Poisson’s equation

κiLφi = κiD
mac(ui+ 1

2
ed) (4.32)

for φi and subsequently subtract the face-centered gradient from the velocity to obtain
the divergence-free field

Pmac(u)f = uf −Gmacφf

The boundary conditions for the solve (4.32) are∇φ·n̂ = 0 at inflow or no-flow boundaries,
φ = 0 at outflow boundaries. Since the embedded boundary is a no-flow boundary, FB = 0
(see equation 4.31) in this context. Trebotich, et al. [18] explain how these boundary
conditions are correct even at inflow faces as the divergence of the velocity field holds the
inhomogeneity.

Our cell-centered projection is the composition of our MAC projection with two aver-
aging operators. We define an operator to average cell-centered velocites to face centers:
For a face with a normal direction d we have

AvC→E(ud)f =
1

2
(udv+ed + udv)

We also define an averaging operator to average gradients from face centers to cell centers.

AvE→C(Gmac(φ)d)i =
1

2
(Ḡmac,d

i+ 1
2
ed
(φ) + Ḡmac,d

i− 1
2
ed
(φ))

where Ḡmac,d

i+ 1
2
ed
(φ) = Gmac,d

i+ 1
2
ed
(φ) if (αi+ 1

2
ed > 0). Otherwise, we must extrapolate to a

covered face, as described in Section 4.2.5. The cell-centered projection operators are
defined to be

Pcc(u) = u− AvE→C(Qmac(AvC→E(u)).

Qcc ≡ (I − Pcc).
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4.2.5 Extrapolation to Covered Faces

A covered face is a face whose aperture vanishes. To compute u · ∇uNC, we need a
second-order solution at covered faces. The flux is obtained by choosing the upwind value
at the face. For the side of the face next to the control volume, we use the extrapolated
state from the control volume. For the other side of the covered face, we must extrapolate
from values at neighboring faces.

Specifically, assume that all i is not covered, but i ∓ ed is covered, so that the face
connecting the two is covered. Then we want to compute ~ui∓ed,±,d, given a collection of
values {Wi′,±,d} that are assumed to be defined if αi′± 1

2
ed 6= 0.

4.2.5.1 Two-dimensional Extrapolation

In two dimensions, extrapolation to covered faces is done as illustrated in Figure 4.9. First
we define the control volumes involved.

iu = i+ sd
′
ed

′
− sded

is = i+ sded

ic = i+ sd
′
ed

′

where d′ 6= d and sd = sign(nd).
Define ~uu,s,c, extrapolations to the edges near the control volumes near i.

~uu = ~uiu,∓,d
~us = ~uis,∓,d − sd∆d~u
~uc = ~uic,∓,d

To extrapolate to the covered faces, we use a linear combination of the values defined
above to compute the value along a ray normal to the boundary and passing through the
center of the covered face. We then extrapolate that value to the covered face using the
second-order slopes combined with characteristic limiting described in Section 5.6. In the
case where one of the values being used to interpolate corresponds to a value on the cell
adjacent to the covered face in question, (the case illustrated in Figure 4.9) we use a
value extrapolated from is (the cell adjacent in the d direction) rather than i. This choice
satisfies the design criterion that the action of the nonconservative evolution should, over
time, tend to make the solution at i tend toward the value of a locally constant solution
in the surrounding cells. This was the design criterion for computing covered faces in
[15]; the procedure given here has the same goal, but using an approach that produces
second-order accurate fluxes. For example, in the case of a linear equation and the normal
pointing in the e1 direction, extrapolation from a locally constant state to the right of
i in Figure 4.9 leads to the solution in i to eventually take on that constant value. If
one used the value at the face extrapolated from i, the solution would tend to the locally
constant value be true only if the advection velocity were negative; otherwise, the value
at i would remain unchanged.
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Ae

B

C A

X

Figure 4.9: Illustration of extrapolation to covered faces in two dimensions The covered
face is at C. We extrapolate from A to Ae and interpolate between Ae and B to the point
X where the boundary normal intersects the line. We then extrapolate back along the
normal to get to the covered face.

If |nd| < |nd′ |:

~ui∓ed,±,d =
|nd|

|nd′ |
~uc + (1−

|nd|

|nd′ |
)~uu − (

|nd|

|nd′ |
sd∆d~u+ sd

′

∆d′~u)

∆d′′~u =
|nd|

|nd′ |
∆d′′

2 ~u
n
ic + (1−

|nd|

|nd′ |
)∆d′′

2 ~u
n
iu , d

′′ = 1, 2 (4.33)

If |nd| ≥ |nd′ |:

~ui∓ed,±,d =
|nd′ |

|nd|
~uc + (1−

|nd′ |

|nd|
)~us − (

|nd
′
|

|nd|
sd

′

∆d′~u+ sd∆d~u)

∆d′′~u =
|nd′ |

|nd|
∆d′′

2 ~u
n
ic + (1−

|nd′ |

|nd|
)∆d′′

2 ~u
n
is , d

′′ = 1, 2 (4.34)

We found that the use of the linear interpolation algorithms (4.33), (4.34) to compute
the slopes used in extrapolating to the covered faces led to a more robust and accurate
algorithm than other simpler choices that we considered. The intent is to use slopes
computed at the same cell centers as the values used in the original linear interpolation in
Figure 4.9, and in the same proportions. By using that choice, it appears that no further
limiting of those slopes is required.

If one or both of the faces from which we are extrapolating are covered we drop order.
If only one of the faces is covered we set the extrapolated value to be the value on the
other face. If both faces are covered, we set the extrapolated value to ~uni .

4.2.5.2 Extrapolation to Covered Face in Three Dimensions

We define the direction of the face normal to be d and d1, d2 to be the directions tangential
to the face. The procedure extrapolation procedure is given as follows.
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• Define the associated control volumes.

• Form a 2×2 grid of values along a plane h away from the covered face and bilinearly
interpolate to the point where the normal intersects the plane.

• Use the slopes of the solution to extrapolate along the normal to obtain a second-
order approximation of the solution at the covered face.

Which plane is selected is determined by the direction of the normal. See Figure 4.10
for an illustration.

If |nd| ≥ |nd1 |, |nd2 |, we define a bilinear function B that interpolates the 2 × 2 grid
of values.

B(Q,∆) = A+ Bξ + Cη +Dξη − ζ∆i00 (4.35)

A = Qi00

B = sd1(Qi01 −Qi00)

C = sd2(Qi10 −Qi00)

D = sd1sd2(Qi11 −Qi00)− (Qi10 −Qi00)− (Qi01 −Qi00)

ξ =
|nd1 |

|nd|
, η =

|nd2 |

|nd|
, ζ = −1 + sd1ξ + sd2η + (sd1sd2 − 2sd)ξη

sdi = sign(ndi)

i00 = i+ sded

i10 = i+ sd1ed1

i01 = i+ sd2ed2

i11 = i+ sd1ed1 + sd2ed2

B interpolates the values in the (d1, d2) plane in Figure 4.10, with Qi00 the value at A,
Qi00 − sd∆i00 the value at point B, and the remaining values filling in the bilinear stencil.
Using this function, we can define the extrapolated value on the covered face.

~ui∓ed,±,d =B(~u·,±,d,∆
d
2~u

n)− B(∆d
2~u

n,∆ ≡ 0)

− sd1
|nd1 |

|nd|
B(∆d1

2 ~u
n,∆ ≡ 0)− sd2

|nd2 |

|nd|
B(∆d2~u,∆ ≡ 0)

d1 6= d2 6= d

(4.36)
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We use the bilinear stencil to interpolate values of both the solution and of the slopes,
except that we use piecewise-constant extrapolation to extrapolate the value of the slopes
from A to B.

The case where one of the tangential directions corresponds to the largest component
of the normal is similar. Assuming |nd1 | > |nd|, |nd2 |, we define

B(Q) = A+Bζ + Cη +Dξη (4.37)

with

A = Qi00 (4.38)

B = sd(Qi01 −Qi00) (4.39)

C = sd2(Qi10 −Qi00) (4.40)

D = sdsd2(Qi11 −Qi00)− (Qi01 −Qi00)− (Qi10 −Qi00) (4.41)

ζ =
|nd|

|nd1 |
, η =

|nd2 |

|nd1 |
(4.42)

i00 = i+ sd1ed1 − sded

i10 = i+ sd1ed1 − sded + sd2ed2

i01 = i+ sd1ed1

i11 = i+ sd1ed1 − sd2ed2

Then

~ui∓ed,±,d =B(~u·,±,d)− B(∆d1
2 ~u)

− sd
|nd|

|nd1 |
B(∆d

2~u)− sd2
|nd2 |

|nd1 |
B(∆d2

2 W )
(4.43)

If any of the values required to perform the interpolation are unavailable, e.g. because
the cells are covered, we drop order by using a weighted sum of the available values:

~ui∓ed,±,d =

∑
i′ ~ui′,±,dκi′∑

i′ κi′
(4.44)

where the sums are over i′ ∈ {i00, i01, i10, i11}, provided that at least one of the i′ is
not covered. If all of the faces used for interpolation are covered, we set the extrapolated
value to be ~uni .
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d1

d2

ABC

Figure 4.10: Illustration of extrapolation to covered faces in three dimensions. The covered
face is at C. We extrapolate from A to B to form a plane of values in d1 − d2. We
interpolate within that plane to the point X where the boundary normal intersects the
plane. We then extrapolate back along the normal to get to the covered face.

4.2.6 Stability of the approximate projection

One can separate projections into two categories: discrete and approximate. To define
a projection operator, one defines a discrete divergence D, a gradient discretization G
and a Laplacian discretization L. A discrete projection is a projection whose divergence
operator is the discrete adjoint of its gradient operator with respect to some appropriate
discrete scalar inner product and vector inner product <Ghφ, ~u> = <D~u, φ> and whose
Laplacian operator is given by L ≡ DG. An approximate projection is one which does
not meet one of these constraints. Discrete projections are idempotent P(P(~u)) = P(~u).
This is an attractive property that can simplify algorithm design. The MAC projection
described above is a discrete projection.

There are some disadvantages to discrete projections, however. For colocated velocities
and symmetric discretizations of divergence and gradient, L ≡ DG typically produces
discretizations of the Laplacian that are badly behaved (the stencils become decoupled
[8]). Approximate projections simplify numerical linear algebra by sacrificing some of
the design advantages associated with discrete projections. The cell-centered projection
described in the previous section is an approximate projection because the Laplacian is
not the composition of the divergence and gradient operators (L 6= DG) and is therefore
not idempotent (P(P(~u)) 6= P(~u)). Following Martin, et. al [12], we have designed our
update equation around having all of the velocity field projected at every time step, as
opposed to just projecting an update (the methods are eqivalent if one uses a discrete
projection). In this section, we show that our approximate projection is a stable operator
in that the divergence of a velocity field diminishes with repeated application of the
projection. We start with an initial velocity field of potential flow over a sphere (or
cylinder in 2d) with radius = 0.1. The sphere is in the center of a unit square domain
with nx = ny = nz = 64. We iteratively project the velocity field u and evaluate the
norm of the diverence κDu the norm of ∇φ after each projection. Figures 4.11, 4.12,
4.13 and 4.14 show that all norms of both quantities monotonically decrease with number
of projection iterations.
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Figure 4.11: Norms (L1, L2, L∞ of κDu versus number of projection iterations in 2D
test.
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Figure 4.12: Norms (L1, L2, L∞ of ∇phi versus number of projection iterations in 2D
test.
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Figure 4.13: Norms (L1, L2, L∞ of κDu versus number of projection iterations in 3D
test.
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Figure 4.14: Norms (L1, L2, L∞ of ∇phi versus number of projection iterations in 3D
test.
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4.2.7 Viscous operator discretization

In this section, we define a Helmoltz operator and how we solve it. We are solving

(I + µL)φ = rho (4.45)

where µ is a constant. Just as we did for the MAC projection, we discretize L ≡ DGmac

(see equation 4.31). In this context, however, since the irregular boundary is a no-slip
boundary, we must solve (4.45) with Dirichelet boundary conditions φ = 0 on the irregular
boundary. To do this, we must compute

FB =
∂φ

∂n̂

at the embedded boundary. We follow Schwartz, et. al [17] and compute this gradient by
casting a ray into space, interpolating φ to points along the ray, and computing the normal
gradient of phi by differencing the result. We cast a ray along the normal of the VoF from
the centroid of area of the irregular face C. We find the closest points B and C where the
ray intersects the planes formed by cell centered points. The axes of these planes d1, d2
will be the directions not equal to the largest direction of the normal. We use biquadratic
interpolation to interpolate data from the nearest cell centers to the intersection points
B and C. In two dimesions, we find the nearest lines of cell centers (instead of planes)
and the interpolation is quadratic. We then use this interpolated data to compute a O(h2

approximation of ∂φ

∂n̂
. In the case where there are not enough cells to cast this ray, we

use a least-squares approximation to ∂φ

∂n̂
which is O(h). As shown in [9], the modified

equation analysis shows that, for Dirichlet boundary conditions, it is sufficient to have
O(1) boundary condtions to achieve second order solution error convergence for elliptic
equations.

4.2.8 Slope Calculation

The notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell-centered values it uses are
available, the 2-point formula B is used if the cell to the right (i.e. the high side) of the
current cell is covered, and the 2-point formula C is used if the cell to the left (i.e. the
low side) current cell is covered.

To compute the limited differences in the first step on the algorithm, we use the
second-order slope calculation [1] with van Leer limiting.
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A

B

C

B

d1

d2

Figure 4.15: Ray casting to get fluxes for Dirichlet boundary conditions at the irregular
boundary. A ray is cast along the normal from the centroid of the irregular area C and the
points A and B are the places where this ray intersects the planes formed by cell centers.
Data is interpolated in these planes to get values at the intersection points. That data is
used to compute a normal gradient of the solution.
.
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∆d
2Wi = ∆vL(∆CWi,∆

LWi,∆
RWi) | ∆

V LLWi | ∆
V LRWi

∆BWi =
2
3
((W − 1

4
∆d

2W )i+ed − (W + 1
4
∆d

2W )i−ed)
∆CWi =

1
2
(W n

i+ed
−W n

i−ed
)

∆LWi = W n
i −W n

i−ed

∆RWi = W n
i+ed

−W n
i

∆3LWi =
1
2
(3W n

i − 4W n
i−ed

+W n
i−2ed

)
∆3RWi =

1
2
(−3W n

i + 4W n
i+ed

−W n
i+2ed

)

∆V LLWi = min(∆3LWi,∆
LWi) if ∆3LWi ·∆

LWi > 0
∆V LLWi = 0 otherwise
∆V LRWi = min(∆3RWi,∆

RWi) if ∆3RWi ·∆
RWi > 0

∆V LRWi = 0 otherwise

We apply the van Leer limiter component-wise to the differences.

4.2.9 Convergence Tests

We have a sphere geometry with a trigonometric correct answer.

φexact = sin(Ax)sin(By)sin(Cz)

where A,B,C are given as input parameters. The truncation error is defined by

τ = L(φ)− L(φexact)

The solution Error is defined by p

E = φ− φexact

The first truncation error test refines all irregular cells. The input file is in figure 4.16.
The results are in figure 4.1. This next truncation error test only refines the left half of
the domain, forcing EBCF crossing. The input file is in figure 4.18 and the results are in
figure 4.3. The first solution error test refines all irregular cells. The input file is in figure
4.17. The results are in figure 4.2. This next solution error test only refines the left half
of the domain, forcing EBCF crossing. The input file is in figure 4.19 and the results are
in figure 4.4.

4.3 Viscous Tensor Equation

This section describes the method for solving the elliptic partial differential equation

κL~v = κα~v + β∇ · F = κρ.

α is a constant and β = β(~x). F is given by

F = η(∇~v +∇~vT ) + λ(I∇ · ~v) (4.46)

where I is the identity matrix, η = η(~x), and λ = λ(~x).
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mg_relax_type = 1

mg_num_smooths = 4

mg_hang = 1.0e-15

mg_eps = 1.0e-13

mg_iter_max = 40

mg_num_cycles = 1

testverbosity = 1

do_error_output = 1

eb_bc_type = 3

domain_bc_type = 2

order_ebbc = 2

trig = 1.0 2.0 3.0

alpha = 0.0

beta = 1.0

max_level = 1

ref_ratio = 2 2 2 2 2

n_cells = 64 64 64

block_factor = 8

fill_ratio = 0.7

buffer_size = 2

max_grid_size = 16

domain_length = 1.0 1.0 1.0

which_geom = 5

sphere_center = 0.5 0.5 0.5

sphere_radius = 0.2

Figure 4.16: Input file for no eb-cf crossing truncation error test.

testverbosity = 1

do_error_output = 1

eb_bc_type = 3

domain_bc_type = 3

order_ebbc = 2

trig = 1.3 2.2 3.1

alpha = 0.0

beta = 1.0

max_level = 1

ref_ratio = 2 2 2 2 2

n_cells = 32 32 32

block_factor = 8

fill_ratio = 0.7

buffer_size = 2

max_grid_size = 16

domain_length = 1.0 1.0 1.0

which_geom = 5

sphere_center = 0.5 0.5 0.5

sphere_radius = 0.25

Figure 4.17: Input file for no eb-cf crossing solution error test.

D N Coarse Error Fine Error Order

2 ∞ 6.707058e-02 3.404632e-02 9.781811e-01
2 1 1.185101e-03 3.083721e-04 1.942266e+00
2 2 3.369470e-03 1.180635e-03 1.512959e+00
3 ∞ 2.292944e-01 1.139643e-01 1.008619e+00
3 1 3.029558e-03 7.814879e-04 1.954812e+00
3 2 7.149217e-03 2.437989e-03 1.552094e+00

Table 4.1: Truncation error convergence rates without EBCF crossing.

96



D N Coarse Error Fine Error Order

2 ∞ 2.576983e-03 6.804803e-04 1.921058e+00
2 1 3.071990e-04 7.511675e-05 2.031967e+00
2 2 4.782005e-04 1.195937e-04 1.999475e+00
3 ∞ 2.710287e-03 7.082757e-04 1.936062e+00
3 1 2.589683e-04 5.907475e-05 2.132162e+00
3 2 3.864260e-04 9.288468e-05 2.056680e+00

Table 4.2: Solution error convergence rates without EBCF crossing.

testverbosity = 1

do_error_output = 1

eb_bc_type = 3

domain_bc_type = 2

order_ebbc = 2

trig = 1.0 2.0 3.0

alpha = 0.0

beta = 1.0

max_level = 2

ref_ratio = 2 2 2 2 2

n_cells = 32 32 32

block_factor = 8

fill_ratio = 0.7

buffer_size = 2

max_grid_size = 16

domain_length = 1.0 1.0 1.0

which_geom = 5

sphere_center = 0.6 0.5 0.5

sphere_radius = 0.2

which_tags = 3

Figure 4.18: Input file for eb-cf crossing truncation error test

mg_relax_type = 1

mg_num_smooths = 4

mg_hang = 1.0e-15

mg_eps = 1.0e-13

mg_iter_max = 40

mg_num_cycles = 1

testverbosity = 1

do_error_output = 1

eb_bc_type = 3

domain_bc_type = 3

order_ebbc = 2

trig = 1.3 2.2 3.1

alpha = 1.0

beta = 1.0

max_level = 2

ref_ratio = 2 2 2 2 2

n_cells = 32 32 32

block_factor = 8

fill_ratio = 0.7

buffer_size = 2

max_grid_size = 16

domain_length = 1.0 1.0 1.0

which_geom = 5

sphere_center = 0.6 0.5 0.5

sphere_radius = 0.15

which_tags = 3

Figure 4.19: Input file for eb-cf crossing solution error test.
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D N Coarse Error Fine Error Order

2 ∞ 2.764243e+00 2.461739e+00 1.672068e-01
2 1 6.579673e-03 1.443258e-03 2.188686e+00
2 2 5.124644e-02 1.612249e-02 1.668377e+00
3 ∞ 6.636587e+00 6.990659e+00 -7.498702e-02
3 1 1.584731e-02 4.300215e-03 1.881758e+00
3 2 8.827088e-02 4.149365e-02 1.089047e+00

Table 4.3: Truncation error convergence rates with EBCF crossing.

D N Coarse Error Fine Error Order

2 ∞ 3.451869e-03 8.783769e-04 1.974465e+00
2 1 2.345537e-04 5.695633e-05 2.041990e+00
2 2 3.955198e-04 9.959345e-05 1.989627e+00
3 ∞ 5.601133e-03 1.528374e-03 1.873721e+00
3 1 2.655585e-04 6.042901e-05 2.135717e+00
3 2 4.058946e-04 9.549447e-05 2.087616e+00

Table 4.4: Solution error convergence rates with EBCF crossing.

4.3.1 Discretization

We discretize normal components of the face-centered gradient using an average of cell-
centered gradients for tangential components and a centered-difference approximation to
the normal gradient.

(∇~v)d
′

i+ 1
2
ed

=

(
1
h
(~vi+ed − ~vi) if d = d′

1
2
((∇~v)d

′

i+ed
+ (∇~v)d

′

i ) if d 6= d′

)

where

(∇~v)di =
1

2h
(~vi+ed − ~vi−ed).

We discretize the divergence as follows

(κ∇ · F )i =
D∑

d′=1

(α∇F )d
′

i+ 1
2
ed

+ αBF
B

where κ and α are the volume and area fractions.
We use equation 4.46 get the flux at cell face centers. We then interpolate the flux

to face centroids. In two dimensions, this interpolation takes the form

F̃
n+ 1

2
f = F

n+ 1
2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1
2

f ) (4.47)
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where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
to the face normal.

F̃
n+ 1

2
f =F

n+ 1
2

f (1− x̄ȳ + |x̄ȳ|)+ (4.48)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (4.49)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (4.50)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (4.51)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued. We use a conservative discretization for the flux divergence.

κv∇ · ~F ≡ (D · ~F ) = ((
D−1∑

d=0

∑

±=+,−

∑

f∈Fd,±
v

±αf F̃
n+ 1

2
f ) + αBv F

B,n+ 1
2

v ) (4.52)

where where FB is the flux at the irregular boundary, wherein lies most of the difficulty
in this operator.

4.3.2 Flux at the Boundary

In all cases, we construct the gradient at the boundary and use equation 4.46 to construct
the flux.

For Neumann boundary conditions, the gradient of the solution is specified at the
boundary.

For Dirichlet boundary conditions, the gradient normal to the boundary is determined
using the value at the boundary. The gradients tangential to the boundary are specified.
For irregular boundaries, the procedure for calculating the gradient normal to the boundary
is given in section 4.2.1.5. For domain boundaries, we construct a quadratic function with
the value at the boundary and the two adjacent points along the normal to construct the
gradient. For example, say we are at the low side of the domain with a value φ0 at the
boundary. The normal gradient is given by. that means that normal gradient is given by

(∇φ)x− 1
2
,j,k

=
9(φ0,j,k − φ0)− (φ1,j,k − φ0)

3∆x
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4.3.3 Convergence Tests

4.4 Conducivity Equation

This section describes the method for solving the elliptic partial differential equation

κLφ = καaφ+ β∇ · F = κρ.

α and beta are constants, a is a function of space and F is given by

F = b∇φ (4.53)

The conductivity b is a function of space.

4.4.1 Discretization

We discretize the face-centered gradient for the flux using a centered-difference approxi-
mation.

(∇φ)d
i+ 1

2
ed

=
1

h
(phii+ed − φi)

We discretize the divergence as follows

(κ∇ · F )i =
D∑

d′=1

(α∇F )d
′

i+ 1
2
ed

+ αBF
B

where κ and α are the volume and area fractions. We use equation 4.53 get the flux at
cell face centers. We then interpolate the flux to face centroids. In two dimensions, this
interpolation takes the form

F̃
n+ 1

2
f = F

n+ 1
2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1
2

f ) (4.54)

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
to the face normal.

F̃
n+ 1

2
f =F

n+ 1
2

f (1− x̄ȳ + |x̄ȳ|)+ (4.55)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (4.56)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (4.57)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (4.58)
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Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued. We use a conservative discretization for the flux divergence.

κv∇ · ~F ≡ (D · ~F ) = ((
D−1∑

d=0

∑

±=+,−

∑

f∈Fd,±
v

±αf F̃
n+ 1

2
f ) + αBv F

B,n+ 1
2

v ) (4.59)

where where FB is the flux at the irregular boundary, wherein lies most of the difficulty
in this operator.

4.4.2 Flux at the Boundary

In all cases, we construct the gradient at the boundary and use equation 4.53 to construct
the flux.

For Neumann boundary conditions, the gradient of the solution is specified at the
boundary.

For Dirichlet boundary conditions, the gradient normal to the boundary is determined
using the value at the boundary. The gradients tangential to the boundary are specified.
For irregular boundaries, the procedure for calculating the gradient normal to the boundary
is given in section 4.2.1.5. For domain boundaries, we construct a quadratic function with
the value at the boundary and the two adjacent points along the normal to construct the
gradient. For example, say we are at the low side of the domain with a value φ0 at the
boundary. The normal gradient is given by. that means that normal gradient is given by

(∇φ)x− 1
2
,j,k

=
9(φ0,j,k − φ0)− (φ1,j,k − φ0)

3∆x

4.5 Overview

The principal EBAMRElliptic classes are:

• EBPoissonOp conforms to the MGLevelOp interface and is used to solve Poisson’s
equation over a single level.

• EBAMRPoissonOp conforms to the AMRLevelOp interface and is used to solve Pois-
son’s equation over an AMR hierarchy.

• EBAMRTGA advances a solution of the heat equation one step using the TGA [19]
algorithm.

• EBCompositeMACProjector projects out the divergence free component of a face-
centered vector field which exists over an AMR hierarchy. This is a discrete projec-
tion and idempotent.
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• EBCompositeCCProjector projects out the divergence free component of a cell-
centered vector field which exists over an AMR hierarchy. This is an approximate
projection.

The first two, since their interface is well described in the Chombo Design document
[4] will only be described through their factories, since the factories are the parts of the
interface that the user actually has to use in order to use the class.

4.6 EBPoissonOpFactory

Factory to generate an operator to solve (α + βL)φ = ρ. This follows the MGLevelOp
interface.

EBPoissonOpFactory(const EBLevelGrid& eblgs,

const RealVect& dx,

const RealVect& origin,

const int& orderEB,

const int& numPreCondIters,

const int& relaxType,

RefCountedPtr<BaseDomainBCFactory> domainBCFactory,

RefCountedPtr<BaseEBBCFactory> ebBcFactory,

const Real& alpha,

const Real& beta,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRhs);

• eblgs : layout of the level

• domainFactory : domain boundary conditions

• ebBCFactory: eb boundary conditions

• dxCoarse: grid spacing at coarsest level

• origin: offset to lowest corner of the domain

• refRatio: refinement ratios. refRatio[i] is between levels i and i+1

• preCondIters: number of iterations to do for pre-conditioning

• relaxType: 0 means point Jacobi, 1 is Gauss-Seidel, 2 is line solver.

• orderEB: 0 to not do flux interpolation at cut faces.

• alpha: coefficent of identity
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• beta: coefficient of laplacian.

• ghostCellsPhi: Number of ghost cells in phi, correction (typically one)

• ghostCellsRhs: Number of ghost cells in RHS, residual, lphi (typically zero) Ghost
cell arguments are there for caching reasons. Once you set them, an error is thrown
if you send in data that does not match.

4.7 EBAMRPoissonOpFactory

Factory to generate an operator to solve (α + βL)φ = ρ. This follows the AMRLevelOp
interface.

EBAMRPoissonOpFactory(const Vector<EBLevelGrid>& eblgs,

const Vector<int>& refRatio,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& dxCoarse,

const RealVect& origin,

const int& orderEB,

const int& numPreCondIters,

const int& relaxType,

RefCountedPtr<BaseDomainBCFactory> domainBCFactory,

RefCountedPtr<BaseEBBCFactory> ebBcFactory,

const Real& alpha,

const Real& beta,

const Real& time,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRhs,

int numLevels = -1);

• eblgs : layouts at each AMR level

• domainFactory : domain boundary conditions

• ebBCFactory: eb boundary conditions

• dxCoarse: grid spacing at coarsest level

• origin: offset to lowest corner of the domain

• refRatio: refinement ratios. refRatio[i] is between levels i and i+1

• preCondIters: number of iterations to do for pre-conditioning

• relaxType: 0 means point Jacobi, 1 is Gauss-Seidel, 2 is line solver.

• orderEB: 0 to not do flux interpolation at cut faces.
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• alpha: coefficent of identity

• beta: coefficient of laplacian.

• time: time for boundary conditions

• ghostCellsPhi: Number of ghost cells in phi, correction (typically one)

• ghostCellsRhs: Number of ghost cells in RHS, residual, lphi (typically zero) Ghost
cell arguments are there for caching reasons. Once you set them, an error is thrown
if you send in data that does not match. Use numlevels = -1 if you want to use the
size of the vectors for numlevels.

4.8 EBAMRTGA

EBAMR implementation of the TGA algorithm to solve the heat equation.

EBAMRTGA(const Vector<EBLevelGrid>& eblg,

const Vector<int>& refRatio,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& dxCoar,

const RefCountedPtr<BaseDomainBCFactory>& domainBCFactory,

const RefCountedPtr<BaseEBBCFactory>& ebBCFactory,

const int& numlevels,

const RealVect& origin,

const Real& diffusionConst,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRHS,

const int& numSmooths,

const int& iterMax,

const int& ODESolver,

const int& numMGCycles,

const int& numPreCondIters,

const int& relaxType,

const int& verbocity);

4.9 EBCompositeMACProjector

Projection to take out pure gradient component of a face-centered vector field which lives
on an AMR Hierarchy.

EBCompositeMACProjector(const Vector<EBLevelGrid>& eblg,

const Vector<int>& refRat,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& coarsestDx,
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const RealVect& origin,

const RefCountedPtr<BaseDomainBCFactory>& baseDomainBCVel,

const RefCountedPtr<BaseDomainBCFactory>& baseDomainBCPhi,

const RefCountedPtr<BaseEBBCFactory>& ebbcPhi,

Vector<LevelData<EBCellFAB>* >& rhoInv,

const bool& useRho,

const bool& subtractOffMean,

const int& numLevels,

const int& verbosity,

const int& numPreCondIters,

const Real& time,

const int& relaxType,

const int& bottomSolverType);

• eblg: AMR hierarchy of grids

• refRat: Refinement ratios between levels. refRat[i] is between levels i and i+1

• coarsestDomain: Computational domain at level 0

• coarsestDx: Grid spacing at level 0

• origin: Physical location of the lower corner of the domain

• baseDomainBCVel : Boundary conditions for velocity

• baseDomainBCPhi : Boundary conditions of phi (for Lapl(phi) = div(u) solve

• rhoInv : Density inverse for variable density projection. Leave undefined if constant
density.

• subtractOffMean : Set this to be true if you want the mean of phi = zero

• useRho : True if using variable density projection.

• numLevels : If data is defined on a set of levels less than the vector lengths, this
is the number of defined levels.

• verbosity : 3 is the normal amount of verbosity. Salt to taste.

• preCondIters : number of iterations to do for pre-conditioning

• time : time for boundary conditions

• relaxType : 0 for Jacobi, 1 for gs, 2 for line relax.

• bottomSolverType: 0 for BiCGStab, 1 for EBSimpleSolver

The embedded boundary’s boundary conditions are always no-flow.
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4.10 EBCompositeCCProjector

/**

Projection to take out pure gradient component of a face-centered vector field u

which lives on an AMR Hierarchy.

u-= Grad(Lapl^-1 (Div(u)))

This is done as interface to the composite mac projector. Velocity is averaged to faces

then a mac projection is executed. The gradient is then averaged back to cells

and subtracted off the velocity. So it really looks more like

u -= AveFtoC(G(DG^-1)(D(AveCToF(u))))

*/

EBCompositeCCProjector(const Vector<EBLevelGrid>& dbl,

const Vector<int>& refRat,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& coarsestDx,

const RealVect& origin,

const RefCountedPtr<BaseDomainBCFactory>& baseDomainBCVel,

const RefCountedPtr<BaseDomainBCFactory>& baseDomainBCPhi,

const RefCountedPtr<BaseEBBCFactory>& ebbcPhi,

Vector<LevelData<EBCellFAB>* >& rhoInv,

const bool& useRho,

const bool& subtractOffMean,

const int& numLevels,

const int& verbosity,

const int& numPreCondIters,

const Real& time,

const int& relaxType,

const bool& do4thOrderVelAveToFaces,

const int& bottomSolverType,

EBCompositeMACProjector* inputMAC= NULL);

• dbl: AMR hierarchy of grids

• ebisl: Hierarchy of EBISLayouts

• refRat: Refinement ratios between levels. refRat[i] is between levels i and i+1

• coarsestDomain: Computational domain at level 0

• coarsestDx: Grid spacing at level 0

• origin: Physical location of the lower corner of the domain

• baseDomainBCVel : Boundary conditions for velocity

• baseDomainBCPhi : Boundary conditions of phi (for Lapl(phi) = div(u) solve
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• rhoInv : Density inverse for variable density projection. Leave undefined if constant
density.

• useRho : True if using variable density projection.

• subtractOffMean : Set this to be true if you want the mean of phi = zero

• numLevels : If data is defined on a set of levels less than the vector lengths, this
is the number of defined levels.

• verbosity : 3 is the normal amount of verbosity. Salt to taste.

• preCondIters : number of iterations to do for pre-conditioning

• time : time for boundary conditions

• relaxType : 0 means point Jacobi, 1 is Gauss-Seidel.

• doEBCFCrossing : true to enable EB Coarse-Fine interface code.

• bottomSolverType: 0 for BiCGStab, 1 for EBSimpleSolver

The embedded boundary’s boundary conditions are always no-flow. This Will define a
new mac projector if you do not send in one.

4.11 Example

4.12 Snippet to solve Poisson’s equation

void solve(const PoissonParameters& a_params,

Vector<LevelData<EBCellFAB>* >& phi,

Vector<LevelData<EBCellFAB>* >& rhs,

Vector<DisjointBoxLayout>& grids,

Vector<EBISLayout>& ebisl)

)

{

int nvar = 1;

//create the solver

AMRMultiGrid<LevelData<EBCellFAB> > solver;

pout() << "defining solver" << endl;

BiCGStabSolver<LevelData<EBCellFAB> > newBottomSolver;

newBottomSolver.verbosity = 0;

defineSolver(solver, grids, ebisl, newBottomSolver, a_params,1.e99);

pout() << "solving " << endl;
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//solve the equation

solver.solve(phi, rhs, a_params.maxLevel, 0);

}

4.13 Snippet to Project a Cell-Centered Velocity Field

void projectVel(

const Vector< DisjointBoxLayout >& a_grids,

const Vector< EBISLayout >& a_ebisl,

const PoissonParameters& a_params)

const int& a_dofileout,

const bool& a_isFine)

Vector<LevelData<EBCellFAB>* >& velo,

Vector<LevelData<EBCellFAB>* >& gphi)

{

int nlevels = a_params.numLevels;

RealVect dxLevCoarsest = RealVect::Unit;

dxLevCoarsest *=a_params.coarsestDx;

ProblemDomain domLevCoarsest(a_params.coarsestDomain);

RealVect dxLev = dxLevCoarsest;

Real domVal = 0.0;

NeumannPoissonDomainBCFactory* domBCPhi = new NeumannPoissonDomainBCFactory();

RefCountedPtr<BaseDomainBCFactory> baseDomainBCPhi = domBCPhi;

domBCPhi->setValue(domVal);

DirichletPoissonDomainBCFactory* domBCVel = new DirichletPoissonDomainBCFactory();

RefCountedPtr<BaseDomainBCFactory> baseDomainBCVel = domBCVel;

domBCVel->setValue(domVal);

NeumannPoissonEBBCFactory* ebBCPhi = new NeumannPoissonEBBCFactory();

ebBCPhi->setValue(domVal);

RefCountedPtr<BaseEBBCFactory> baseEBBCPhi = ebBCPhi;

Vector<LevelData<EBCellFAB>*> rhoinv;

const int bottomSolverType = 1;

Vector<EBLevelGrid> eblg (a_grids.size());

Vector<RefCountedPtr<EBQuadCFInterp> > quadCFI(a_grids.size(), NULL);

domLev = domLevCoarsest;
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for(int ilev = 0; ilev < a_grids.size(); ilev++)

{

int nvar = 1;

int nref = a_params.refRatio[ilev];

eblg[ilev] = EBLevelGrid(a_grids[ilev], a_ebisl[ilev], domLev);

if(ilev > 0)

{

int nrefOld = a_params.refRatio[ilev-1];

ProblemDomain domLevCoar = coarsen(domLev, nrefOld);

quadCFI[ilev] = new EBQuadCFInterp(a_grids[ilev ],

a_grids[ilev-1],

a_ebisl[ilev ],

a_ebisl[ilev-1],

domLevCoar,

nrefOld, nvar,

*(eblg[ilev].getCFIVS()));

}

domLev.refine(nref);

}

EBCompositeCCProjector projectinator(eblg, a_params.refRatio, quadCFI,

a_params.coarsestDx,

RealVect::Zero,

baseDomainBCVel,

baseDomainBCPhi,

baseEBBCPhi,

rhoinv, false, true, -1, 3 ,40,1.e99, 1,

projectinator.project(velo, gphi);

}
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Chapter 5

Example 1–EBAMRGodunov

5.1 Introduction

This document describes our numerical method for integrating systems of conservation
laws (e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy with embedded
boundaries. We use an unsplit, second-order Godunov method, extending the algorithms
developed by Colella [5] and Saltzman [16].

5.2 Notation

All these operations take place in a very similar context to that presented in [4]. For
non-embedded boundary notation, refer to that document.

The standard (i, j, k) is not sufficient here to denote a computational cell as there can
be multiple VoFs per cell. We define v to be the notation for a VoF and f to be a face.
The function ind(v) produces the cell which the VoF lives in. We define v+(f) to be
the VoF on the high side of face f ; v−(f) is the VoF on the low side of face f ; f+

d (v)
is the set of faces on the high side of VoF v; f−

d (v) is the set of faces on the low side
of VoF v, where d ∈ {x, y, z} is a coordinate direction (the number of directions is D).
Also, we compose these operators to represent the set of VoFs directly connected to a
given VoF: v+

d (v) = v+(f+
d (v)) and v−

d (v) = v−(f−
d (v)). The << operator shifts data

in the direction of the right hand argument. The shift operator can yield multiple VoFs.
In this case, the shift operator includes averaging the values at the shifted-to VoFs.

We follow the same approach in the EB case in defining multilevel data and operators
as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmaxl=0 , we define the valid
VoFs on level l to be

V lvalid = ind−1(Ωl
valid) (5.1)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmaxl=0 , ϕl,valid : V lvalid → R
m (5.2)
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For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)

~F l,valid = (F l,valid
0 , . . . , F l,valid

D−1 )

F l,valid
d : F l,d

valid → R
m

(5.3)

For computations at cell centers the notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). A value is “available” if its
VoF is not covered and is within the domain of computation. For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

5.3 Equations of Motion

We are solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S (5.4)

For 3D polytropic gas dynamics,

U =(ρ, ρux, ρuy, ρuz, ρE)
T

F x =
(
ρux, ρu

2
x, ρuxuy, ρuxuz, ρuxE + uxp

)T

F y =
(
ρuy, ρuxuy, ρu

2
y, ρuyuz, ρuyE + uyp

)T

F z =
(
ρuz, ρuxuz, ρuzuy, ρu

2
z, ρuzE + uzp

)T

E =
γp

(γ − 1)ρ
+

|~u|2

2

(5.5)

We are given boundary conditions on faces at the boundary of the domain and on the em-
bedded boundary. We also assume there may be a change of variables W = W (U) (W ≡
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“primitive variables”) that can be applied to simplify the calculation of the characteristic
structure of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W )
∂W d

∂xd
= S ′

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

(5.6)

For 3D polytropic gas dynamics,

W = (ρ, ux, uy, uz, p)
T

Ax =




ux ρ 0 0 0
0 ux 0 0 1

ρ

0 0 ux 0 0
0 0 0 ux 0
0 ρc2 0 0 ux




Ay =




uy 0 ρ 0 0
0 uy 0 0 0
0 0 uy 0 1

ρ

0 0 0 uy 0
0 0 ρc2 0 uy




Az =




uz 0 0 ρ 0
0 uz 0 0 0
0 0 uz 0 0
0 0 0 uz

1
ρ

0 0 0 ρc2 uz




5.4 Approximations to ∇ · F .

To obtain a second-order approximation of the flux divergence in conservative form, first
we must interpolate the flux to the face centroid. In two dimensions, this interpolation
takes the form

F̃
n+ 1

2
f = F

n+ 1
2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1
2

f ) (5.7)

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
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to the face normal.

F̃
n+ 1

2
f =F

n+ 1
2

f (1− x̄ȳ + |x̄ȳ|)+ (5.8)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (5.9)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (5.10)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (5.11)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued.

We then define the conservative divergence approximation.

∇ · ~F ≡ (D · ~F )c =
1

kvh
((

D−1∑

d=0

∑

±=+,−

∑

f∈Fd,±
v

±αf F̃
n+ 1

2
f ) + αBv F

B,n+ 1
2

v ) (5.12)

The non-conservative divergence approximation is defined below.

∇ · ~F = (D · ~F )NC =
1

h

∑

±=+,−

D−1∑

d=0

±F̄
n+ 1

2
v,±,d (5.13)

F̄
n+ 1

2
v,±,d =





1

N(Fd,±
v )

∑
f∈Fd,±

v
F
n+ 1

2
f if N(Fd,±

v ) > 0

F
covered,n+ 1

2
v,±,d otherwise

(5.14)

The preliminary update update of the solution of the solution takes the form:

Un+1
v = Un

v −∆t((1− kv)(D · ~F )NCv + kv(D · ~F )cv) (5.15)

δM = −∆tkv(1− kv)((D · ~F )cv − (D · ~F )NCv ) (5.16)

δM is the total mass increment that has been unaccounted for in the preliminary update.
See the EBAMRTools document for how this mass gets redistributed in an AMR context.
On a single level, the redistribution takes the following form:

Un+1

v
′ := Un+1

v
′ + wv,v

′ , δMv (5.17)

v
′

∈ N (v), (5.18)

where N (v) is the set of VoFs that can be connected to v with a monotone path of
length ≤ 1. The weights are nonnegative, and satisfy

∑
v
′∈N (v)

κv′wv,v
′ = 1.
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5.5 Flux Estimation

Given Un
i and Sni , we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2
f ≈ F d(x0+(i+ 1

2
ed)h, tn+ 1

2
∆t). Specifically, we want to compute the fluxes at the

center of the Cartesian grid faces corresponding to the faces of the embedded boundary
geometry. In addition, we want to compute fluxes at the centers of Cartesian grid faces
corresponding to faces adjacent to VoFs, but that are completely covered. Pointwise oper-
ations are conceptually the same for both regular and irregular VoFs. In other operations
we specify both the regular and irregular VoF calculation. The transformations ∇UW
and ∇WU are functions of both space and time. We shall leave the precise centering of
these transformations vague as this will be application-dependent. In outline, the method
is given as follows.

5.5.1 Flux Estimation in Two Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v ) (5.19)

2. Compute slopes ∆dWv. This is described separately in section 5.6.

3. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Adv)P±(∆

dWv)

Adv = Ad(Wv)

P±(W ) =
∑

±λk>0

(lk ·W )rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Snv

(5.20)

where λk are eigenvalues of Adi , and lk and rk are the corresponding left and right
eigenvectors. We then extrapolate to the covered faces. First we define the VoFs
involved.

d′ =1− d

sd =sign(nd)

vup =ind−1(ind(v) + sd
′

ed
′

− sded)

vside =ind−1(ind(v) + sded)

vcorner =ind−1(ind(v) + sd
′

ed
′

)

(5.21)
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Define W up,side,corner, extrapolations to the edges near the VoFs near v.

W up =Wvup,∓,d

W side =Wvside,∓,d − sd∆dW

W corner =Wvcorner,∓,d

∆dW =

{
∆dW n

vside if nd > nd
′

∆dW n
vcorner otherwise

∆d′W =

{
∆d′W n

vcorner if nd > nd
′

∆d′W n
vup otherwise

(5.22)

where the slopes are defined in section 5.6 If any of these vofs does not have a
monotone path to the original VoF v, we drop order the order of interpolation.

If |nd| < |nd′ |:

W full =
|nd|

|nd′ |
W corner+(1−

|nd|

|nd′ |
)W up−(

|nd|

|nd′ |
sd∆dW+sd

′

∆d′W ) (5.23)

W covered
v,±,d =





W full if both exist

W up if only vup exists

W corner if only vcorner exists

W n
v if neither exists

(5.24)

If |nd| ≥ |nd′ |:

W full =
|nd′ |

|nd|
W corner + (1−

|nd′ |

|nd|
)W side − (

|nd
′
|

|nd|
sd

′

∆d′W + sd∆dW )

(5.25)

W covered
v,±,d =





W full if both exist

W side if only vside exists

W corner if only vcorner exists

W n
v if neither exists

(5.26)
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4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i+
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i+
1

2
ed)h, d)

d = dir(f)

(5.27)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(5.28)

6. Compute corrections to Wi,±,d due to the transverse derivatives. For regular cells,
this takes the following form.

W
n+ 1

2
i,±,d = nWi,±,d −

∆t

2h
∇UW · (F 1D

i+ 1
2
ed1

− F 1D
i− 1

2
ed1

) (5.29)

d 6= d1, 0 ≤ d, d1 < D

(5.30)

For irregular cells, we compute the transverse derivatives and use them to correct
the extrapolated values of U and obtain time-centered fluxes at centers of Cartesian
faces. In two dimensions, this takes the form

Dd,⊥Fv =
1

h
(F̄v,+,d1 − F̄v,−,d1)

F̄v,±,d′ =





1
N

v,±,d
′

∑
f∈F

v,±,d
′
F 1D
f ,±,d′

if Nv,±,d′ > 0

F 1D, covered

v,±,d′
otherwise

d 6= d1, 0 ≤ d, d1 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(5.31)

Extrapolate to covered faces with the procedure described above using W
n+ 1

2
·,∓,d to

form W
n+ 1

2
,covered

·,±,d .
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7. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d,W
n+ 1

2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d, (i+
1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i+
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(5.32)

8. Modify the flux with artificial viscosity where the flow is compressive.

5.5.2 Flux Estimation in Three Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v ) (5.33)

2. Compute slopes ∆dWv. This is described separately in section 5.6.

3. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Adv)P±(∆

dWv)

Adv = Ad(Wv)

P±(W ) =
∑

±λk>0

(lk ·W )rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Snv

(5.34)

where λk are eigenvalues of Adi , and lk and rk are the corresponding left and right
eigenvectors.

We then extrapolate to the covered faces. Define the direction of the face normal to
be df and d1, d2 to be the directions tangential to the face. The procedure develops
as follows

• We define the associated vofs.

• We form a 2x2 grid of values along a plane h away from the covered face and
bilinearly interpolate to the point where the normal intersects the plane.

• We use the slopes of the solution to extrapolate along the normal to get a
second-order approximation of the solution at the covered face.
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Which plane is selected is determined by the direction of the normal. If any of these
VoFs does not have a monotone path to the original VoF v, we drop order the order
of interpolation.

If |nf | ≥ |nd1 | and |ndf | ≥ |nd2 |:

v00 =ind−1(ind(v) + sdfedf )

v10 =ind−1(ind(v) + sd1ed1)

v01 =ind−1(ind(v) + sd2ed2)

v11 =ind−1(ind(v) + sd1ed1 + sd2ed2)

W 00 = Wv00,∓,df − sdf∆dfWv00

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(5.35)

We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at
which the values live:

W (xd1 , xd2) = Axd1 +Bxd2 + Cxd1xd2 +D

A =sd1(W 10 −W 00)

B =sd2(W 01 −W 00)

C =sd1sd2(W 11 −W 00)− (W 10 −W 00)− (W 01 −W 00)

D =W 00

(5.36)

We then extrapolate to the covered face from the point on the plane where the
normal intersects

W full = W (sd1
|nd1 |

|ndf |
, sd2

|nd2 |

|ndf |
)−∆dfWv00 − sd1

|nd1 |

|ndf |
∆d1Wv10 − sd2

|nd2 |

|ndf |
∆d2Wv01

(5.37)
Otherwise (assume |nd1 | ≥ |ndf | and |nd1 | ≥ |nd2 |):

v00 =ind−1(ind(v) + sd1ed1)

v10 =ind−1(ind(v) + sd1ed1)− sdfedf

v01 =ind−1(ind(v) + sd1ed1) + sd2ed2

v11 =ind−1(ind(v) + sd1ed1 − sdfedf + sd2ed2

W 00 = Wv00,∓,df

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(5.38)
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We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at
which the values live. This is shown in equation 5.36. We then extrapolate to the
covered face from the point on the plane where the normal intersects

W full = W (sdf
|ndf |

|nd1 |
, sd2

|nd2 |

|nd1 |
)−∆d1Wv00 − sdf

|ndf |

|nd1 |
∆dfWv10 − sd2

|nd2 |

|nd1 |
∆d2Wv01

(5.39)
In either case,

W covered
v,±,d =

{
W full if all four VoFs exist

W n
v otherwise

(5.40)

4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i+
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i+
1

2
ed)h, d)

d = dir(f)

(5.41)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(5.42)

6. Compute corrections to Ui,±,d corresponding to one set of transverse derivatives
appropriate to obtain (1, 1, 1) diagonal coupling. This step is only meaningful in
three dimensions. We compute 1D flux differences, and use them to compute
Uv,±,d1,d2 , the d1-edge-centered state partially updated by the effect of derivatives
in the d1, d2 directions.

D1D
d F 1D

v =
1

h
(F̄ 1D

v,+,d − F̄ 1D
v,−,d)

F̄v,±,d =





1
N±,d

(
∑

f∈Fv,±,d

F 1D
f ) if Nv,±,d > 0

F 1D, covered
v,±,d otherwise

(5.43)

Wv,±,d1,d2 = Wv,±,d1 −
∆t

3
∇UW (D1D

d2
F 1D)v (5.44)
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We then extrapolate to covered faces with the procedure described above using
W·,±,d1,d2 to form W covered,d

·,±,d1,d2
and compute an estimate to the fluxes:

Ff ,d1,d2 = R(Wv−(f),+,d1,d2 ,Wv+(f),−,d1,d2 , d1)

| RB(Wv−(f),+,d1,d2 , (i+
1

2
ed)h, d1)

| RB(Wv+(f),−,d1,d2 , (i+
1

2
ed)h, d1)

d =dir(f)

F covered
v,−,d1,d2 =R(W

covered
v,−,d1,d2,Wv,−,d1,d2 , d1)

F covered
v,+,d1,d2

=R(Wv,+,d1,d2,W
covered
v,+,d1,d2

, d1)

(5.45)

7. Compute final corrections to Wi,±,d due to the final transverse derivatives. We
compute the 2D transverse derivatives and use them to correct the extrapolated
values of U and obtain time-centered fluxes at centers of Cartesian faces. In three
dimensions, this takes the form:

Dd,⊥Fv =
1

h
(F̄v,+,d1,d2 − F̄v,−,d1,d2 + F̄v,+,d2,d1 − F̄v,−,d2,d1)

F̄v,±,d′ ,d′′ =





1
N

v,±,d
′

∑
f∈F

v,±,d
′
Ff ,±,d′ ,d′′ if Nv,±,d′ > 0

F covered

v,±,d′ ,d′′
otherwise

d 6= d1 6= d2 0 ≤ d, d1, d2 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(5.46)

We then extrapolate to covered faces with the procedure described above using

W
n+ 1

2
·,±,d to form W

n+ 1
2
,covered,d

·,±,d .

8. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d,W
n+ 1

2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d, (i+
1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i+
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(5.47)

9. Modify the flux with artificial viscosity where the flow is compressive.
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5.5.3 Modificiations for R-Z Computations

For R-Z calculations, we make some adjustments to the algorithm. Specifically, we sep-
arate the radial pressure force as a separate flux. This makes free-stream preservation in
the radial direction easier to achieve. For this section, we will confine ourselves to the
compressible Euler equations.

5.5.3.1 Equations of Motion

The compressible Euler equations in R-Z coordinates are given by

∂U

∂t
+

1

r

∂(rF r)

∂r
+

1

r

∂(rF z)

∂z
+
∂H

∂r
+
∂H

∂z
= 0 (5.48)

where

U =(ρ, ρur, ρuz, ρE)
T

F r =(ρur, ρu
2
r, ρuruz, ρur(E + p))T

F z =(ρuz, ρuruz, ρu
2
z, ρuz(E + p))T

H =(0, p, p, 0)T

(5.49)

5.5.3.2 Flux Divergence Approximations

In section 5.4, we describe our solution update strategy and this remains largely unchanged.
Our update still takes the form of equation 5.16 and redistribution still takes the form
of equation 5.18. The definitions of the divergence approximations do change, however.
The volume of a full cell ∆Vj is given by

∆Vj = (j +
1

2
)h3 (5.50)

where (i, j) = ind−1(v). Define κvolv to be the real volume of the cell that the VoF
occupies.

κvolv =
1

∆V

∫

∆v

rdrdz =
1

∆V

∫

∂∆v

r2

2
nrdl (5.51)

κvolv =
h

2∆V
((αr2)f(v,+,r) − (αr2)f(v,−,r) − αB r̄

2
δvn

r) (5.52)

The conservative divergence of the flux in RZ is given by

(D · ~F )cv =
h

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))
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(
∂H

∂r

)c
=

1

κvh2

∫
∂H

∂r
drdz =

1

κvh2

∫
Hnrdl

(
∂H

∂z

)c
=

1

κvh2

∫
∂H

∂z
drdz =

1

κvh2

∫
Hnzdl

We always deal with these divergences in a form multiplied by the volume fraction κ.

κv(D · ~F )cv =
hκv

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))

κv

(
∂H

∂r

)c
=

1

h2

∫
Hnrdl =

1

h
((Hα)f(v,+,r) − (Hα)f(v,−,r))

κv

(
∂H

∂z

)c
=

1

h2

∫
Hnzdl =

1

h
((Hα)f(v,+,z) − (Hα)f(v,−,z))

where F̄ has been interpolated to face centroids where α denotes the ordinary area frac-
tion. The nonconservative divergence of the flux in RZ is given by

(D · ~F )ncv =
1

hrv
((rF r)f(v,+,r) − (rF r)f(v,−,r))

+
1

h
(F z

f(v,+,z) − F z
f(v,−,z))

(
∂H

∂r

)nc
=

1

h
(Hf(v,+,r) −Hf(v,−,r))

(
∂H

∂z

)nc
=

1

h
(Hf(v,+,z) −Hf(v,−,z))

5.5.3.3 Primitive Variable Form of the Equations

In the predictor step, we use the nonconservative form of the equations of motion. See
Courant and Friedrichs [6] for derivations.

∂W

∂t
+ Ar

∂W

∂r
+ Az

∂W

∂z
= S (5.53)

where

W =(ρ, ur, uz, p)
T

S =
(
−ρ

ur
r
, 0, 0,−ρc2

ur
r

)T
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Ar =




ur ρ 0 0
0 ur 0 1

ρ

0 0 ur 0
0 ρc2 0 ur




Ar =




uz ρ 0 0
0 uz 0 0
0 0 uz

1
ρ

0 0 ρc2 uz




5.5.3.4 Flux Registers

Refluxing is the balancing the fluxes at coarse-fine interfaces so the coarse side of the
interface is using the same flux as the integral of the fine fluxes over the same area. In
this way, we maintain strong mass conservation at coarse-fine interfaces. As shown in
equation, 5.5.3.2, the conservative divergence in cylindrical coordinates is has a differenct
form than in Cartesian coordinates. It is therefore necessary to describe the refluxing
operation specifically for cylindrical coordinates.

Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector field. We want to define

a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We do this by extending

F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by Ff

valid.

< F f
z >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref )(D−1)

) ∑

f∈C−1
nref (fc)

(r̄α)f (F̄
z + H̄)f

< F f
r >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref )(D−1)

) ∑

f∈C−1
nref

(fc)

(rα)f (F
r +H)f

F c
r,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(rα)fc

)(F r +H)fc

F c
z,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(r̄α)fc

)(F̄ z + H̄)fc

f c ∈ ind
−1(i+

1

2
ed), i+

1

2
ed ∈ ζfd,+ ∪ ζfd,−

ζfd,± = {i±
1

2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref
(Ωf )}

The VoF vc is the coarse volume that is adjacent to the coarse-fine interface and rvc
is

the radius of its cell center. Then we can define (D · ~F )v,v ∈ Vcvalid, using the expression
above, with F̃f =< F f

d > on faces covered by Ff . We can express the composite

divergence in terms of a level divergence, plus a correction. We define a flux register δ ~F f ,
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associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF f
d : ind−1(ζfd,+ ∪ ζfd,−) → R

m

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F c,valid

d on F c,d
valid then

for v ∈ Vcvalid
Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F

c)v (5.54)

Here δ ~F f is a flux register, set to be

δF f
d =< F f

d > −F c
d on ind

−1(ζcd,+ ∪ ζcd,−) (5.55)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ωf it is given by

κv(DRδ ~F
f )v =

D−1∑

d=0

(
∑

f :v=v+(f)

δF f
d,f −

∑

f :v=v−(f)

δF f
d,f ) (5.56)

For the remaining vofs in Vfvalid,

(DRδ ~F
f ) ≡ 0 (5.57)

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF ))v (5.58)

5.5.4 Artifical Viscosity

The artificial viscosity coefficient is K0, the velocity is ~u and d = dir(f).

(D~u)f = (udv+(f) − udv−(f)) +
∑

d
′ 6=d

1

2
(∆d

′

ud
′

v+(f) +∆d
′

ud
′

v−(f))

Kf = K0 max(−(D~u)f , 0)

F
n+ 1

2
f = F

n+ 1
2

f −Kf (U
n
v+(f) − Un

v−(f))

F covered
v,±,d = F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

We modify the covered face with the same divergence used in the adjacent uncovered
face.

F covered
v,±,d =F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

f =f(v,∓, d)

This has the effect of negating the effect of artificial viscosity on the non-conservative
divergence of the flux at irregular cells. We describe later that the solid wall boundary
condition at the embedded boundary is also modified with artificial viscosity.
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5.6 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [3] combined with charac-
teristic limiting.

∆dWv = ζv ∆̃dWv

∆̃dWv = ∆vL(∆BWv,∆
LWv,∆

RWv) | ∆
d
2Wv | ∆d

2Wv

∆d
2Wv = ∆vL(∆CWv,∆

LWv,∆
RWv) | ∆

V LLWv | ∆V LRWv

∆BWv =
2

3
((W −

1

4
∆d

2W )<<ed)v − ((W +
1

4
∆d

2W )<<−ed)v)

∆CWv =
1

2
((W n<<ed)v − (W n<<−ed)v)

∆LWv = W n
v − (W n<<−ed)v

∆RWv = (W n<<ed)v −W n
v

∆3LWv =
1

2
(3W n

v − 4(W n<<−ed)v + (W n<<−2ed)v)

∆3RWv =
1

2
(−3W n

v + 4(W n<<ed)v − (W n<<2ed)v)

∆V LLWv =

{
min(∆3LWv,∆

L
v ) if ∆3LWv ·∆

LWv > 0

0 otherwise

∆V LRWv =

{
min(∆3RWv,∆

R
v ) if ∆3RWv ·∆

RWv > 0

0 otherwise

At domain boundaries, ∆LWv and ∆RWv may be overwritten by the application. There
are two versions of the van Leer limiter ∆vL(δWC , δWL, δWR) that are commonly used.
One is to apply a limiter to the differences in characteristic variables.

1. Compute expansion of one-sided and centered differences in characteristic variables.

αkL = lk · δWL (5.59)

αkR = lk · δWR (5.60)

αkC = lk · δW (5.61)

2. Apply van Leer limiter

αk =

{
min(2 |αkL |, 2 |α

k
R |, |αkC |) if αkL · αkR > 0

0 otherwise
(5.62)

3. ∆vL =
∑

k α
krk
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Here, lk = lk(W n
i ) and r

k = rk(W n
i ).

For a variety of problems, it suffices to apply the van Leer limiter componentwise to
the differences. Formally, this can be obtain from the more general case above by taking
the matrices of left and right eigenvectors to be the identity.

5.6.1 Flattening

Finally, we give the algorithm for computing the flattening coefficient ζi. We assume
that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζv =

{
min

0≤d<D

ζdv if
∑

D−1
d=0 ∆d

1u
d
v < 0

1 otherwise
(5.63)

ζdv = min3(ζ̃
d, d)v

ζ̃dv = η(∆d
1pv, ∆

d
2pv, min3(K, d)v)

∆d
1pv = ∆Cpv | ∆Lpv | ∆Rpv

∆d
2pv = (∆d

1p<<ed)v + (∆d
1p<<−ed)v | 2∆d

1pv | 2∆d
1pv

The functions min3 and ζ are given below.

min3(q, d)v = min((q<<ed)v, qv, (q<<−ed)v) | minqv, (q<<−ed)v) | min(q<<ed)v, qv)

ζ(δp1, δp2, p0) =





0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0

1 otherwise

r0 = 0.75, r1 = 0.85, d = 0.33

(5.64)

Note that min3 is not the minimim over all available VoFs but involves the minimum of
shifted VoFs which includes an averaging operation.

5.7 Computing fluxes at the irregular boundary

The flux at the embedded boundary is centered at the centroid of the boundary x̄. We
extrapolate the primitive solution in space from the cell center. We then transform to the
conservative solution and extrapolate in time using the stable, non-conservative estimate
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of the flux divergence described in equation 5.14.

Wv,B = W n
v +

D−1∑

d=0

(x̄d∆
dW n

v −
∆t

2∆x
Ad∆dW n

v ) (5.65)

F
n+ 1

2
v,B = RB(U

n+ 1
2

v,B ,nB
v ) (5.66)

For polytropic gas dynamics, this becomes

ρv,B =ρnv +
D−1∑

d=0

(x̄d∆
dρnv −

∆t

2∆x
(ud∆dρ+ ρ∆dud)nv)

pv,B =pnv +
D−1∑

d=0

(x̄d∆
dpnv −

∆t

2∆x
(ud∆dp+ ρc2∆dud)nv)

ud1v,B =(ud1)nv +
D−1∑

d=0

(x̄d∆
d(ud1)nv)

−
∆t

2∆x
(ud1∆d1ud1 +

1

ρ
∆d1p)nv

−
∆t

2∆x
(
∑

d26=d1

(ud2∆d2ud1))

(5.67)

If we are using solid-wall boundary condtions at the irregular boundary, we calculate an
approximation of the divergence of the velocity at the irregular cell D(~u)v and use it to
modify the flux to be consistent with artificial viscosity. The d-direction momentum flux
at the irregular boundary is given by −prnd where pr is the pressure to emerge from the
Riemann solution in equation 5.67. For artificial viscosity, we modify this flux as follows.

(D~u)v =
D−1∑

d
′
=0

∆d
′

ud
′

v

pr = pr − 2K0 max(−(D~u)v, 0)~u · n̂

5.8 Results

We run the Modiano problem for one time step to compute the truncation error of the
operator. The error at a given level of refinement Eh is approximated by

Etrunc =
Uh(t)− U e(t)

t
(5.68)

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t = ∆t. We
run the Modiano problem for a fixed time to compute the solution error of the operator.
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The error at a given level of refinement Eh is approximated by

Esoln = Uh(t)− U e(t) (5.69)

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t. The order
of convergence p is given by

p =
log( |E

2h|
|Eh|

)

log(2)
(5.70)

5.9 Class Hierarchy

The principal EBAMRGodunov classes follow.

• EBAMRGodunov, the AMRLevel-derived class which is driven by the AMR class.

• EBLevelGodunov, a class owned by AMRGodunov. EBLevelGodunov advances the
solution on a level and can exist outside the context of an AMR hierarchy. This
class makes possible Richardson extrapolation for error estimation.

• EBPatchGodunov, is a base class which encapsulates the operations required to
advance a solution on a single patch.

• EBPhysIBC is a base class which encapsulates initial conditions and flux-based
boundary condtions.

5.9.1 Class EBAMRGodunov

EBAMRGodunov is the AMRLevel-derived class with which the AMR class will directly inter-
act. Its user interface is therefore constrained by the AMRLevel interface. The important
data members of the EBAMRGodunov class are as follows.

• LevelData<EBCellFAB> m_state_old, m_state_new;

The state data at old and new times. Both need to be kept because subcycling in
time requires temporal interpolation.

• Real m_cfl, m_dx;

CFL number and grid spacing for this level.

• EBPWLFineInterp m_fine_interp;

Interpolation operator for refining data during regridding that were previously only
covered by coarser data.

128



Variable Coarse Error Fine Error Order

mass-density 3.127796e-05 1.669137e-05 9.060445e-01
x-momentum 3.292329e-05 1.675957e-05 9.741235e-01
y-momentum 6.766401e-05 3.141857e-05 1.106771e+00
energy-density 1.094807e-04 5.842373e-05 9.060502e-01

Table 5.1: Truncation error convergence rates using L-0 norm. hf = 1
512

and hc = 2hf ,
D = 2

Variable Coarse Error Fine Error Order

mass-density 7.358933e-08 1.616991e-08 2.186185e+00
x-momentum 7.569344e-08 2.010648e-08 1.912508e+00
y-momentum 1.764416e-07 4.648945e-08 1.924216e+00
energy-density 2.575709e-07 5.659651e-08 2.186185e+00

Table 5.2: Truncation error convergence rates using L-1 norm. hf = 1
512

and hc = 2hf ,
D = 2

Variable Coarse Error Fine Error Order

mass-density 4.010155e-07 1.164273e-07 1.784228e+00
x-momentum 6.057493e-07 2.402295e-07 1.334308e+00
y-momentum 1.717569e-06 5.992271e-07 1.519193e+00
energy-density 1.403616e-06 4.075112e-07 1.784237e+00

Table 5.3: Truncation error convergence rates using L-2 norm. hf = 1
512

and hc = 2hf ,
D = 2

Variable Coarse Error Fine Error Order

mass-density 3.769203e-07 7.212809e-08 2.385626e+00
x-momentum 3.427140e-07 7.681266e-08 2.157589e+00
y-momentum 7.501614e-07 1.692840e-07 2.147755e+00
energy-density 1.319233e-06 2.524508e-07 2.385625e+00

Table 5.4: Solution error convergence rates using L-0 norm. hf = 1
512

and hc = 2hf ,
D = 2
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• EBCoarseAverage m_coarse_average;

This is the averaging operator which replaces data on coarser levels with the average
of the data on this level where they coincide in space.

• RefCountedPtr<EBPhysIBC> m_phys_ibc_ptr;

This boundary condition operator provides flux-based boundary data at domain
boundaries and also provides initial conditions.

The EBAMRGodunov implementation of the AMRLevel currently does the following for
each of the important interface functions.

• Real EBAMRGodunov::advance()

This function advances the conservative state by one time step. It calls the
EBLevelGodunov::step function. The timestep returned by that function is stored
in member data.

• void EBAMRGodunov::postTimeStep()

This function calls refluxing from the next finer level and averages its solution to
the next finer level.

• void regrid(const Vector<Box>& a_new_grids)

This function changes the union of rectangles over which the data is defined. At
places where the two sets of rectangles intersect, the data is copied from the previous
set of rectangles. At places where there was only data from the next coarser level,
piecewise linear interpolation is used to fill the data.

• void initialData()

In this function the initial state is filled by calling m_phys_ibc_ptr->initialize.

• void computeDt()

This function returns the timestep stored during the advance() call.

• void computeInitialDt()

This function calculates the time step using the maximum wavespeed returned by
a EBLevelGodunov::getMaxWaveSpeed call. Define the maximum wavespeed to
be w and the initial timestep multiplier to be K and the grid spacing at this level
to be h,

∆t =
Kh

w
. (5.71)

• DisjointBoxLayout loadBalance(const Vector<Box>& a_grids)

Calls the Chombo load balancer to create the returned layout.
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5.9.2 Class EBLevelGodunov

EBLevelGodunov is a class owned by AMRGodunov. EBLevelGodunov advances the so-
lution on a level and can exist outside the context of an AMR hierarchy. This class makes
possible Richardson extrapolation for error estimation. The important functions of the
public interface of EBLevelGodunov follow.

• void define(const DisjointBoxLayout& a_thisDBL,

const DisjointBoxLayout& a_coarDBL,

const EBISLayout& a_thisEBISL,

const EBISLayout& a_coarEBISL,

const RedistSTencil& a_redStencil,

const Box& a_DProblem,

const int& a_numGhost,

const int& a_nRefine,

const Real& a_dx,

const EBPatchGodunov* const a_integrator,

const bool& a_hasCoarser,

const bool& a_hasFiner);

Define the internal data structures. For the coarsest level, an empty DisjointBoxLay-
out is passed in for coaserDisjointBoxLayout.

– a_thisDBL, a_coarDBL The layouts at this level and the next coarser level.
For the coarsest level, an empty DisjointBoxLayout is passed in for coarDBL.

– a_DProblem, a_dx The problem domain and grid spacing at this level.

– a_nRefine The refinement ratio between this level and the next coarser level.

– a_numGhost The number of ghost cells (assumed to be isotropic) required to
advance the solution.

– a_bc Boundary conditions and initial conditions are encapsulated in this object.

• Real step(LevelData<EBCellFAB>& a_U,

LevelData<BaseIVFAB<Real> >& a_massDiff,

EBFluxRegister& a_coarFluxRegister,

EBFluxRegister& a_fineFluxRegister

const LevelData<EBCellFAB>& a_UCoarseOld,

const LevelData<EBCellFAB>& a_UCoarseNew,

const Real& a_time,

const Real& a_TCold,

const Real& a_TCNew,

const Real& a_dt);

Advance the solution at this timeStep for one time step.

– a_UCoarseOld, a_UCoarseNew The solution at the next coarser level at the
old and new coarse times.
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– a_time, a_TCold, a_TCNew The time of this solution (before the advance)
and the old and new coarse solution times.

– a_dt The time step at this level.

– a_U The solution at this level.

– a_massDiff Redistribution mass.

– a_coarFluxRegister, a_fineFluxRegisters The flux registers between
this level and the adjacent levels.

• Real getMaxWaveSpeed(const LevelData<EBCellFAB>& a_state);

Return the maximum wave speed of input a_state for purposes of limiting the time
step.

5.9.3 Class EBPatchGodunov

The base class EBPatchGodunov provides a skeleton for the application-dependent
pieces of a second-order unsplit Godunov method. The virtual functions are called by
EBLevelGodunov, which manages the overall assembly of the second-order unsplit fluxes.
As part of EBPatchGodunov, we provide some member functions (slope, flattening), that
we expect to be useful across applications, but require either virtual functions or parameter
information by the user.

There are three types of grid variables that appear in the unsplit Godunov method in
section (??): conserved quantities, primitive variables, and fluxes, denoted below by U,
q, F, respectively. It is often convenient to have the number of components for primitive
variables and for fluxes exceed that for conserved quantities. In the case of primitive
variables, redundant quantities are carried that parameterize the equation of state in order
to avoid multiple calls to that function. In the case of fluxes, it is often convenient to split
the flux for some variables into multiple components, e.g., dividing the momentum flux
into advective and pressure terms. The API given here provides the flexibility to support
these various options.
Construction Methods:

• void setPhysIBC(RefCountedPtr<EBPhysIBC> a_bc)

Set the boundary condtion pointer of the integrator.

• virtual void define(

const Box& a_domain,

const Real& a_dx);

Set the domain variables for this level.

• virtual EBPatchGodunov* new_patchGodunov = 0;

Factory method. Return pointer to new PatchGodunov object with its boundary
condtions defined.
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EBLevelGodunov API: (Translation: these are the only things that actually get called by
EBLevelGodunov.

• virtual void

regularUpdate(EBCellFAB& a_consState,

EBFluxFAB& a_flux,

BaseIVFAB<Real>& a_nonConservativeDivergence,

const EBCellFAB& a_source,

const Box& a_box);

Update the state using flux difference that ignores EB. Store fluxes used in this
update Store non-conservative divergence. Flux coming out of htis this should exist
at cell face centers.

• interpolateFluxToCentroids(BaseIFFAB<Real> a_centroidFlux[SpaceDim],

const BaseIFFAB<Real>* const a_fluxInterpolant[SpaceDim],

const IntVectSet& a_irregIVS);

Interpolates cell-face centered fluxes to centroids over irregular cells. Flux going
into this should exist at cell face centers.

• virtual void

irregularUpdate(EBCellFAB& a_consState,

Real& a_maxWaveSpeed,

BaseIVFAB<Real>& a_massDiff,

const BaseIFFAB<Real> a_centroidFlux[SpaceDim],

const BaseIVFAB<Real>& a_nonConservativeDivergence,

const Box& a_box,

const IntVectSet& a_ivs);

Update the state at irregular VoFs and compute mass difference and the maximum
wave speed over the entire box. Flux going into this should exist at VoF centroids.

• virtual Real getMaxWaveSpeed(

const EBCellFAB& a_U,

const Box& a_box)= 0;

Return the maximum wave speed on over this patch.

• void setValidBox(const Box& a_validBox,

const EBISBox& a_ebisbox,

const Real& a_time,

const Real& a_dt);

Set the valid box of the patch.

Virtual interface:
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• virtual void consToPrim(EBCellFAB& a_primState,

const EBCellFAB& a_conState) = 0;

Compute the primitive state given the conserved state. Wi = W (Ui).

• virtual void incrementWithSource(

EBCellFAB& a_primState,

const EBCellFAB& a_source,

const Real& a_scale,

const Box& a_box) = 0;

Increment the primitive variables by the source term, as in (5.34). a_scale = 0.5*dt.

• virtual void normalPred(EBCellFAB& a_qlo,

EBCellFAB& a_qhi,

const EBCellFAB& a_q,

const EBCellFAB& a_dq,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

Extrapolate in the low and high direction from q, as in (5.34). A default implemen-
tation is provided which assumes the existence of the virtual functions limit.

• virtual void riemann(EBFaceFAB& a_flux,

const EBCellFAB& a_qleft,

const EBCellFAB& a_qright,

const int& a_dir,

const Box& a_box) = 0;

virtual void riemann(BaseIVFAB<Real>& a_coveredFlux,

const BaseIVFAB<Real>& a_extendedState,

const EBCellFAB& a_primState,

const IntVecSet& a_coveredFace,

const int& a_dir,

const Side::LoHiSide& a_sd) = 0;

Given input left and right states, compute a suitably-upwinded flux (e.g. by solving
a Riemann problem), as in equattion 5.41.

• virtual void updateCons(EBCellFAB& a_conState,

const EBFaceFAB& a_flux,

const BaseIVFAB<Real>& a_coveredFluxMinu,

const BaseIVFAB<Real>& a_coveredFluxPlus,

const IntVecSet& a_coveredFaceMinu,

const IntVecSet& a_coveredFacePlus,

const int& a_dir,

const Box& a_box,

const Real& a_scale) = 0;
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Given the value of the flux, update the conserved quantities and modify in place
the flux for the purpose of passing it to a EBFluxRegister.

consstate_i +=a_scale*(flux_i-1/2 - flux_i+1/2)

.

• virtual void updatePrim(EBCellFAB& a_qminus,

EBCellFAB& a_qplus,

const EBFaceFAB& a_flux,

const BaseIVFAB<Real>& a_coveredFluxMinu,

const BaseIVFAB<Real>& a_coveredFluxPlus,

const IntVecSet& a_coveredFaceMinu,

const IntVecSet& a_coveredFacePlus,

const int& a_dir,

const Box& a_box,

const Real& a_scale) = 0;

Given a_flux, the value of the flux in the direction a_dir, update q_plus, q_minus,
the extrapolated primitive quantities, as in (??,5.29,5.30).

primstate_i += a_scale*Grad_W U(flux_i-1/2 - flux_i+1/2)

• virtual void applyLimiter(EBCellFAB& a_dq,

const EBCellFAB& a_dql,

const EBCellFAB& a_dqr,

const int& a_dir,

const Box& a_box) = 0;

Given left and right one-sided undivided differences a_dql,a_dqr, apply van Leer
limiter vL defined in section (5.6) to a_dq. Called by the default implementation
of EBPatchGodunov::slope.

• virtual int numPrimitives() const = 0;

Returns number of components for primitive variables.

• virtual int numFluxes() const = 0;

Returns number of components for flux variables.

• virtual int numConserved() const = 0;

Returns number of components for conserved variables.

• virtual Interval velocityInterval() const = 0;

Returns the interval of component indices in the primitive variable EBCellFAB for
the velocities.
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• virtual int pressureIndex() const = 0;

Returns the component index for the pressure. Called only if flattening is used.

• virtual int bulkModulusIndex() const = 0;

Returns the component index for the bulk modulus, used as a normalization to
measure shock strength in flattening. Called only if flattening is used.

• virtual Real artificialViscosityCoefficient() const = 0;

Returns value of artificial viscosity. Called only if artificial viscosity is being used.

Useful member functions:

• void slope(EBCellFAB& a_dq,

const EBCellFAB& a_q,

const EBCellFAB& a_flattening,

int a_dir,

const Box& a_box) const;

Compute the limited slope a_dq of the primitive variables a_q for the components in
the interval a_interval, using the algorithm described in (5.6). Calls user-supplied
EBPatchGodunov::applyLimiter.

• void getFlattening(const EBCellFAB& a_q);

Computes the flattening coefficient (5.63) and stores it in the member data
m_flatcoef. Called from EBPatchGodunov::slope, if required.

5.9.4 Class EBPhysIBC

EBPhysIBC is an interface class owned and used by PatchGodunov through which a user
specifies the initial and boundary of conditions of her particular problem. These bound-
ary conditions are flux-based. EBPhysIBC contains as member data the mesh spacing
(Real a_dx) and the domain of computation (ProblemDomain a_domain). The impor-
tant user functions of EBPhysIBC are as follows.

• virtual void define(const Box& a_domain

const Real& a_dx) = 0;

Define the internals of the class.

• virtual EBPhysIBC* new_ebphysIBC() = 0;

Factory method. Return a new EBPhysIBC object.

• virtual void fluxBC(EBFaceFAB& a_flux,

const EBCellFAB& a_Wextrap,

const EBCellFAB& a_Wcenter,

136



const int& a_dir,

const Side::LoHiSide& a_side,

const Real& a_time) = 0;

Enforce the flux boundary condtion on the boundary of the domain and place the
result in a_flux. The arguments to this function are as follows

– a_flux is the array of the fluxes over the box. This values in the array
that correspond to the boundary faces of the domain are to be replaced with
boundary values.

– a_Wextrap is the extrapolated value of the state’s primitive variables. This
data is cell-centered.

– a_Wcenter is the cell-centered value of the primitive variables at the start of
the time step. This data is cell-centered.

– a_dir, a_side is the direction normal and the side of the domain where the
function will be enforcing boundary condtions.

– a_time is the time at which boundary conditions will be imposed.

• virtual void initialize(LevelData<FArrayBox>& a_conState);

Fill the input with the intial conserved variable data of the problem.

• void

setBndrySlopes(EBCellFAB& a_deltaPrim,

const EBCellFAB& a_primState,

const int& a_dir)

Set the slopes at domain boundaries as described in section 5.6.
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Variable Coarse Error Fine Error Order

mass-density 1.103779e-09 1.855826e-10 2.572317e+00
x-momentum 1.125935e-09 2.356203e-10 2.256588e+00
y-momentum 1.617258e-09 2.371548e-10 2.769649e+00
energy-density 3.863314e-09 6.495531e-10 2.572320e+00

Table 5.5: Solution error convergence rates using L-1 norm. hf = 1
512

and hc = 2hf ,
D = 2

Variable Coarse Error Fine Error Order

mass-density 5.553216e-09 1.114919e-09 2.316385e+00
x-momentum 6.038922e-09 1.251264e-09 2.270905e+00
y-momentum 9.515687e-09 2.244841e-09 2.083695e+00
energy-density 1.943688e-08 3.902358e-09 2.316379e+00

Table 5.6: Solution error convergence rates using L-2 norm. hf = 1
512

and hc = 2hf ,
D = 2
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