

Front-end ASICs for High Resolution Detectors

Gianluigi De Geronimo

Brookhaven National Laboratory, Upton, NY, USA

- State-of-the-art and design flow
- Examples of ASICs
- Peak detection
- ASIC in cryogenic environment
- Prospects for Germanium sensors

Motivation

Electronics for radiation detectors consists of low noise readout of signals generated in the sensor by ionizing radiation

Low density, low functionality \rightarrow discrete electronics

ASICs have enabled entirely new classes of radiation detectors to be constructed

State-of-the-Art

typical front-end electronics channel

(2007) - 64-channel ASIC for Neutron Detectors: charge amplifier, filter, peak detector, 6-bit ADC, 18-bit timestamp, FIFO, MUX, 1.5 mW/ch, 110 e⁻ rms

Subcircuits

- Low-noise, low-power charge amplifiers
 - gas, liquid, solid state detectors
 - capacitances from 10 fF to 10 nF
- Switched and continuous adaptive reset
- High-order filters, stabilizers, drivers
 - peak time / gain adjustment
- Single- and multi-level discriminators
- Peak and time detectors, derandomizers
- Analog memories and multiplexers
- Counters and digital memories
- Configuration registers
- ESD protections
- Test pulse generators
- Analog-to-digital converters
- Digital-to-analog converters
- Precision band-gap references
- Temperature sensors
- Readout control logic
- Low-voltage differential signaling
- Current-mode analog and digital interface

(2008)

ASIC for 3D Position Sensitive Detectors

- · 130 channels
- · 2.5 mW/channel
- 13 x 9 mm²
- · 320,000 transistors

ASIC Design Flow

From concept to ready-for-production:

1 - 2 rev. cycles, 2 - 3 years (depending on complexity)

Progressive increase in functionality and complexity require more resources, more expertise, and/or longer development time

ASIC Fabrication : Prototyping

Major foundries accept designs from different customers (MPW)

ASIC Fabrication : Production

Major foundries accept the purchase of a dedicated run

Main Stream Technologies															
Year Technology node nm		Technology		TSMC				Customer Submission Date						-	
2010 MPW fabrication schedule	2009 40	CLN40/CMN40	40 nm 0 .	Jan 9V	Feb	Mar 22	Apr 19	May 17	Jun 21 21	Jul 19	Aug 16	Sep 20	Oct 18	Nov 15	Dec
 from MOSIS Service (mosis.org) 	2006 45 2006 65	CLN65/CMN65	65 nm 1	V ⁴ ₁₉	8 22	8 29	19 12 26	10 24	7 28	19 12 26	9 23	20 7 27	10 11 25	8 22	6
	2002 <mark>90</mark>	CLN90/CMN90	90 nm	4	8	8	5	3	1	6	30		4	1 29	
Typical applications	²⁰⁰⁰ 130	CL013/CM013 CL013LP	0.13 µm 1 , 0.13 µm	2V 19	22 8	29 8	19 12	17 3	28 1	26	23	27	25	22	
• CMOS ≥130nm: <ghz analog,="" mixed-signa<="" td=""><td>al</td><td><u>CL013LV</u></td><td>0.13 μm</td><td>19</td><td>8 22</td><td>29 8 29</td><td>19 12 19</td><td>1/ 3 17</td><td>28 1 28</td><td>26</td><td>23</td><td>27</td><td>25</td><td>22</td><td></td></ghz>	al	<u>CL013LV</u>	0.13 μm	19	8 22	29 8 29	19 12 19	1/ 3 17	28 1 28	26	23	27	25	22	
 CMOS <130nm: >GHz analog, digital 	J	CL018/CM018	0.18 um 1	.8V.4	8	8 15	5	3 10	7 14	6	2 9	7	4	1	6
 SiGe (HBT): >>GHz analog 	1999 180	CL018HV H	V 0.18 µm	4	10	22 8	19	17 3	21	6	16 30 30	20	18	15 29 1	
 SOI: >>GHz analog, high-density digital 		CL018LP	0.18 µm	4 19		8 15	19	3	14	6 19	30	7	18	1	6
• HV : >>high-voltage (>30V)		CL018LV	0.18 µm	4 19	8 16	8 22	5 19	3 10	7 21	6 19	2 9 16	7 20	4 18	1 8 15	6
All of these are main stream	1998 250	CI 025/CM025	0.25 µm 2	5V ⁴	22	29		10	14	6	30 2	20	4	29 1 15	
available at MPW services	1995	<u>CL035/CM035</u>	0.35 µm	3V ⁴		15	26		21	19	30 16		18	29	
 used for prototyping 	350	CL035HV BCD CL035HV DDD H	0.35 μm V 0.35 μm	4 ⁽¹⁾		15 ⁽²⁾	26 26 ⁽¹⁾		21 ⁽²⁾		16 16 ⁽¹⁾		18 ⁽²⁾		
Technologice with highest schedule		Technolog	Technology Customer Submission Date												
rechnologies with nignest schedule	2010 nm			Jan	Feb	Mar	Apr M	lay Ju	n J	íul A	Aug	Sep	Oct	Nov	Dec
are expected to be available for	32	32501 ¹ SOI	32 nm 0.9∨ 45 nm						1	12		27			
several years.	45	<u>10LPE</u> ¹	65 nm 1V	19		15					9				
	65	105F ¹	65 nm		1			2:	1			27			6
Technologies with smaller feature	90	9LP 8HP	90 nm 0.13 um 1 2V		16		1	.4 .7				13			6
size require lower voltage and are	130-	8RF ²	0.13 µm		16		1	.0			9			8	
Size require tower voltage and are		8WL SiGe	0.13 µm		16		2	24				20			13
more expensive	180		0.18 µm 1.8V		16		10	3	4		16	13	11	29	6
		7RFSOI	0.18 µm	11	10	15	19	7	7		16		11		13
Low voltage has impact on	050	<u>7WL</u> SiGe	0.18 µm	19		15		3	1	12		7		8	
	1995	6WL SIGe	0.25 µm 2.5V	19	1		5		1	6			4	1	
- design complexity	350	5PAE	0.35 µm 3.3V	19	1		19			U			11	1	
- dynamic range (or area)	L														

Some Examples

H3D Channel Architecture

12.9 mm

Peak Detector - Classical Configuration

- detects and holds peak without external trigger
- provides accurate timing signal (peak found, z-cross on derivative)
- low accuracy (op-amp offset, CMRR)
- poor drive capability

Peak Detector - Multiphase

- 2 Peak-detect (> threshold)
- Pulse is tracked and peak is held
- Only M_P is enabled
- Comparator is used as peak-found

1 - Track (< threshold)

- Analog output is tracked at hold capacitor
- M_P and M_N are both enabled

Peak Detector - Multiphase

Chip 2 – positive offset

ASIC for High-Resolution X-ray Spectroscopy

- Collaboration with NASA and NSLS at XRS for elemental mapping.
- Based on Silicon Drift Pixels

Energy [keV]

Microelectronics - 15/27

G. De Geronimo et al., IEEE TNS 55 (2008), collaboration with NASA

Peak Detector vs Commercial MCA

Pile-up Rejector (PUR)

BROOKHAVEN NATIONAL LABORATORY Instrumentation Division

90 x 100 μ m², < 1 μ W at 200 kcps

Peak Detector - Timing Function

Compare timing at threshold crossing with timing at peak

Time-walk strongly dependent on amplitude

Time-walk almost independent of amplitude (equivalent to zero crossing on differential)

Peak detection

 $\sigma_t \approx \frac{ENC \cdot \tau_{\mathsf{p}} \lambda_{\mathsf{p}}}{Q \; \rho_{\mathsf{p}}}$

Peak Detector - Timing Function

Compare timing at threshold crossing with timing at peak

Shaper Coefficients for Amplitude and Timing Resolution

ASIC for High-rate Photon Counting Applications

G. De Geronimo et al., IEEE TNS 54 (2007), collaboration with eV Microelectronics

LAr TPC Operation

70 tons <u>Liquid Argon Time Projection Chamber</u> (LAr TPC), 800 feet underground in South Dakota at the Deep Underground Science & Engineering Lab (DUSEL) for <u>Long Baseline Neutrino Experiments</u> (LBNE)

Analog ASIC - Overview

- 16 channels
- charge amplifier, high-order filter
- adjustable gain: 4.7, 7.8, 14, 25 mV/fC (charge 55, 100, 180, 300 fC)
- adjustable filter time constant (peaking time 0.5, 1, 2, 3 μs)
- selectable collection/non-collection mode (baseline 200, 800 mV)
- selectable dc/ac coupling (100µs)

- rail-to-rail signal analog signal processing
- band-gap referenced biasing
- temperature sensor (~ 3mV/°C)
- 136 registers with digital interface
- 5.5 mW/channel (input MOSFET 3.9 mW)
- single MOSFET test structures
- ~ 15,000 MOSFETs
- designed for room and cryogenic operation
- technology CMOS 0.18 μm, 1.8 V, 6M, MIM, SBRES

Some differences in saturation voltage, sub-threshold slope, transconductance

Input MOSFET Optimization

Noise Model: Low-Frequency

lower slope < 1

Equivalent 1/f (K_{feq})

Equivalent 1/f (K_{feq})

 ${\mbox{\cdot}}$ dependence of K_{feq} on drain current density is now modest

- negligible error in optimization
- some error in estimate for large relative power (large mW/pF)
- averaged K_{feq} can also be used

Analog ASIC - Front-end Detail and Calibration Scheme

Prospects for Germanium Sensors

- Compared with cold JFET:
 - warm MOSFET offers similar resolution at shorter peaktime
 - cold MOFET offers higher resolution at lower power and shorter peaktime
 - higher functionality increases signal integrity
 - multiplexing reduces cryostat feed-throughs
 - shorter peak-time allows higher rate and reduces microphonics
- Actual energy resolution about 10-20% higher (contribution from the next stages)
- Power in input MOSFET includes input branch

• Power **dissipated by the next stages** must be included (from few tens of μ W to few mW depending on the required linear dynamic range)

Conclusions and Future Work

- ASIC design process is defined and predictable
- ASICs offer
 - high resolution and high functionality at low power
 - high yield, high reliability, long lifetime
- Mixed-signal circuits are compatible with low-noise front-ends
- ASICs are "happier" in cryogenic environment, offering a valuable solution for a number of detectors/applications

Acknowledgment

<u>BNL</u>

Veljko Radeka, Graham Smith, Bo Yu

Alessio D'Andragora, Jack Fried, Shaorui Li, Neena Nambiar, Emerson Vernon

University of Michigan

Zhong He, Feng Zhang

Berkeley

Steve Boggs, Lucian Mihailescu, Kai Vetter