High Pressure Xenon Electroluminescent TPC for neutrino-less double beta decay

Azriel Goldschmidt, Tom Miller, David Nygren (PI), Josh Renner, Derek Shuman, Helmuth Spieler, Jim Siegrist

LBNL, Brown Bag Instrumentation Talk
May 25 2011

Motivations

- Xenon gas at high pressure offers excellent energy resolution in principle
 (only x 3 worse than best Ge diodes!)
- Electroluminescence provides linear gain with extremely low fluctuations
- HP Xe TPC can provide total energy and image of the particle tracks for topological discrimination of event type (Gotthard TPC: x30 grejection)
- Applications range from g-ray imaging for Homeland security/nonproliferation, medical physics/imaging and 0-n bb decay search in ¹³⁶Xe
- R&D is focused on the NEXT Collaboration, now preparing for a 100 kg
 ¹³⁶Xe TPC detector for Canfranc Underground Laboratory, Spain.

NEXT is funded at ~5M € for construction Spain-Portugal-Colombia-France-Russia-US collaboration

Rare nuclear transition between same mass nuclei

Energetically allowed for even-even nuclei

Figure 2.1: Simplified atomic mass scheme for nuclei with A=136. The parabolae connecting the odd-odd and even-even nuclei are shown. While ¹³⁶Xe is stable to ordinary beta decay, it can decay into ¹³⁶Ba by double-beta decay.

Physics

- Neutrinoless double beta decay (bb0n):
 - Tests Majorana nature of neutrino
 - Helps determine absolute neutrino mass
 - If observed, lepton number NOT conserved

- Current situation: controversial (one claim), may require

new and richer approach

How to look for neutrino-less decay

Measure the spectrum of the electrons

Xenon: Strong dependence of energy resolution on density!

Fig. 5. Density dependencies of the intrinsic energy resolution (%FWHM) measured for 662 keV gamma-rays.

For r < 0.55 g/cm³, ionization energy resolution is "intrinsic"

Intrinsic energy resolution

$$dE/E = 2.35 \times (F \times V/Q)^{1/2}$$

- $F \circ Fano factor: F = 0.15 (HPXe)$ (LXe: F ~20)
- W ^o Average energy per ion pair: W ~ 25 eV
- Q o Energy deposited, e.g. 662 keV from Cs137 g-rays:

$$dE/E = 0.56\%$$
 FWHM (HPXe)

$$N = Q/W \sim 26,500$$
 primary electrons $s_N = (F \times N)^{1/2} \sim 63$ electrons rms!

Intrinsic energy resolution

$$dE/E = 2.35 \times (F \times V/Q)^{1/2}$$

- $F \circ Fano factor: F = 0.15 (HPXe)$ (LXe: F ~20)
- W O Average energy per ion pair: W ~ 25 eV
- Q o Energy deposited, e.g. 2457 keV from ¹³⁶Xe --> ¹³⁶Ba:

$$dE/E = 0.28\%$$
 FWHM (HPXe)

$$N = Q/W \sim 100,000$$
 primary electrons $s_N = (F \times N)^{1/2} \sim 124$ electrons rms!

Gain and noise

Impose a requirement:

Need gain G with very low noise/fluctuations!

Uncorrelated fluctuations can add in quadrature:

$$s = ((F + G)xN)^{1/2}$$

F ° constraint due to fixed energy deposit
G ° noise + fluctuations of detection process
G » 1.5 /(number of photo-electrons)

per electron

$$P$$
 n_{pe} > 10 per electron for G ≤ F

Electro-Luminescence (EL) is the key

(Gas Proportional Scintillation)

- Physics process generates ionization signal
- Electrons drift in low electric field region
- Electrons enter a high electric field region
- Electrons gain energy, excite xenon: 8.32 eV
- Xenon radiates VUV (»175 nm, 7.5 eV)
- Electron starts over, gaining energy again
- <u>Linear</u> growth of signal with voltage
- Photon generation up to ~1000/e, but no ionization
- No exponential growth b <u>fluctuations are very small</u>
- $dN_{UV} = J_{CP} \cdot N^{1/2}$
- Optimal EL conditions: $J_{CP} = 0.01$ (Poisson: $J_{CP} = 1$)

Virtues of Electro-Luminescence in HPXe

- <u>Linearity</u> of gain versus pressure, HV
- Immunity to microphonics
- Tolerant of losses due to impurities
- Absence of positive ion <u>space charge</u>
- Absence of <u>ageing</u>, <u>quenching</u> of signal
- Isotropic signal dispersion in space
- Trigger, energy, and tracking functions are accomplished with optical detectors

TPC with Electroluminescence: Total Energy and Track Imaging

LBNL-TAMU TPC Prototype

PMT Array: inside the pressure vessel Quartz window 2.54 cm diameter PMTs

EL photons see this

Inserting the TPC... carefully!

A typical ¹³⁷Cs **g**waveform (sum of 19 PMTs) ~300,000 detected photoelectrons

Summed waveform noise and PE level

Calibrated (not corrected) S2 Spectrum

Raw S2 vs Drift Time

Drift Time Correction:

Computed with charge moments (ex expansion)

HPXe @ 10 Atm, ¹³⁷Cs 662 keV

EL in 4.5 bar of Xenon (Russia - 1997)

Fig. 1. Schematic diagram of the gas scintillation drift chamber with 19 PMT matrix readout.

A. Bolozdynya et al. | Nucl. Instr. and Meth. in Phys. Res. A 385 (1997) 225-238

Position measurement

- EL light viewed by PMT array 13 cm away
- Solid angle and limited (~50%) reflectivity give position sensitivity
- 20-30% relative variations from position
- Large PE statistics is key

Dennis Chan

Muon Tracking: Setup

External 2-scintillators trigger

2 Sample Muons

14 cm vertical span

Points x & y averages (only y shown) for a time slice

Individual points ~40 keV deposited

About 1 MeV total per muon

Dennis Chan

Topology: "spaghetti, with meatballs"

Backgrounds for the bb0n search

SiPM Tracking Plane

Hamamatsu S10362-025C

Multi Pixel Photon Counter (MPPC)

Active area: 1 mm²

Pixel size: 25 μm

Array of APDs working in Geiger mode.

Si-PMs Plane

Selection of Si-PMs to have the minimun spread in gain.

18 Daughter Boards

12 Boards with 16 Si-PMs

2 Boards with 12 Si-PMs

4 Boards with 8 Si-PMs

Pressure vessel design study at 15 bars for 100 kg *NEXT*

~120 cm

Laboratorio Subterraneo de Canfranc

Waiting for NEXT...

Conclusions and Outlook

- Successful operation of xenon EL TPC in 10-15 Bar range
- We have achieved 1.8% FWHM @ 662 keV (10 Atm), intrinsic resolution is ~0.6% FWHM
- Improve: gas purity, localization, mesh flatness, and calibration
- R&D program includes:
 - Develop imaging with light sensor near the EL production region
 - Studying TMA as a gas additive (Penning and diffusion)
 - Variants for the readout with wavelength shifting bars
 - Scaling from current total mass of 1kg to 100 kg and beyond
 - Develop prototype for applications in gamma ray imaging, gamma spectroscopy and medical imaging
- NEXT is starting to happen now!

Backup slides

Sample ¹³⁷Cs run

- Run #234, April-6-2011
- 40,000 events, 3h long, inst. rate ~20 Hz, 24GByte raw
- Source: 1 miliCurie 662 keV gamma highly collimated and on the TPC axis entering the pressure vessel through a 2 mm thick stainless steel window on a reentrance port.
- Pressure: 10.2 bar
- -10.6 kV @ cathode
- +2.7 kV first EL mesh
- +10.6kV second EL mesh.
- 8 cm drift region: 1.66 kV/cm
- 0.3 cm EL gap: 2.6 kV/(cm atm)

Cosmic-ray Muons

bb0n Experiments

•	CANDLES	⁴⁸ Ca	CaF ₂ scintillator crystals
•	COBRA	¹¹⁶ Cd	CdZnTe crystals
•	CUORE	¹²⁸ Te	TeO2 Bolometers
•	EXO	¹³⁶ Xe	Liquid Xenon TPC
•	GERDA	⁷⁶ Ge	Enriched Ge diode
•	MAJORANA	⁷⁶ Ge	Enriched Ge diode
•	SNO+	¹⁵⁰ Nd	Nd loaded liquid scintillator
•	SuperNEMO 8	³² Se	Foils in track/calorimeter

Parent isotope	$\langle F_N \rangle \equiv \langle G^{0\nu} M^{0\nu} ^2 \rangle \text{year}^{-1}$	$\overline{\eta}$	$ Q_{\beta\beta} $ (keV)
⁴⁸ Ca	$(5.4^{+3.0}_{-1.4}) \times 10^{-14}$	0.54	4271
⁷⁶ Ge	$(7.3 \pm 0.6) \times 10^{-14}$	0.73	2039
⁸² Se	$(1.7^{+0.4}_{-0.3}) \times 10^{-13}$	1.70	2995
$^{100}{ m Mo}$	$(5.0 \pm 0.3) \times 10^{-13}$	5.0	3034
$^{116}\mathrm{Cd}$	$(1.3^{+0.7}_{-0.3}) \times 10^{-13}$	1.30	2802
¹³⁰ Te	$(4.2 \pm 0.5) \times 10^{-13}$	4.26	2533
$^{136}{ m Xe}$	$(2.8 \pm 0.4) \times 10^{-14}$	0.28	2479
¹⁵⁰ Nd	$(5.7^{+1.0}_{-0.7}) \times 10^{-12}$	57.0	3367

Mother Board

Mother Board which contains electronic components .

Feedtroughs and connectors.