

Measurement of $\mathbf{K}^+ \rightarrow \pi^+ \sqrt{\mathbf{v}}$ at the CERN SPS Un-separated hadron beam LAV: SAV Large Angle Photon Veto $75 \, \text{GeV/c}$ Small Angle y Veto $0.8 - 1.0 \, \text{GHz}$ Vacuum Tank π/p/K (~6% K⁺) CHOD Charged **CHANTI** Hodoscope Charged Target Particle Veto CEDAR Gigatracker LKr MUV-----**RICH** Beam Pipe Straw Decay Region: 65 m Tracker

Total Length: 270 m

- GTK stations installed in vacuum
- High and non-uniform radiation levels
 - expected fluence is $\sim 2 \times 10^{14}$ (1 MeV n_{eq}/cm^2) during one year of operation (100 days) in the sensor center
- Efficient cooling necessary for stable detector operation
 Very low material budget (~0.15% X₀) in the active beam area

- Two cooling options under study:
 - convective cooling in a vessel (gas cooling)
 - micro-channel cooling (liquid cooling)

Gas cooling

- cooling via flow of cold gaseous nitrogen (100 K)
- thin cylindrical kapton windows (100 µm total)
- aluminum vessel frame

full size prototype built
optimizations ongoing to improve uniformity of temperature distribution across sensor area

Micro-channel cooling

- micro-channel cooling plate: 2 bonded Si wafers (150 µm total thickness in the active detector area)
 - channels plus opening for inlet and outlet manifolds

Silicon (380 µm)				
Silicon (380 µm)				
Mag = 215 X	EHT = 3.00 kV WD = 6 mm	Signal A = InLens Stage at T = 6.9 °	Date :27 Jan 2011 File Name = #8090-008.tif	EPFL-CMI

- $100 \ \mu m \times 100 \ \mu m$ micro-channels
- rad-hard liquid coolant (C_6F_{14})
- full-scale prototype and vacuum test stand built
 - optimize manifold to reduce pressure plus wafer thinning

Pixel matrix	40 columns × 45		
Pixels per chip	1800		
Chip size	12 mm × 19 mm		
Dissipated power	$\sim 2 \text{ W}/\text{cm}^2$		
Dynamic range	3600 – 60000 e⁻ (0.6 – 10 fC)		
Time resolution	< 200 ps		
Peaking time	5 ns		
Maximum rate per pixel	140 kHz		
Maximum data bandwidth	~8 Gb/s		

 "End of column" chip architecture presented on June 9th by G. Aglieri Rinella ("Front-end electronics" session)

Photo

Inner Detector

Opaque Shee

Status of Hyper-Kamiokande Detector R&D

Masashi Yokoyama (U.Tokyo) for Hyper-Kamiokande Working Group

Hyper-Kamiokande WG: Y.Hayato, K.Kishimoto, M.Miura, S.Moriyama, M.Nakahata, S.Nakayama, Y.Obayashi, H.Sekiya, M.Shiozawa, Y.Suzuki, T.Kajita, K.Okumura, K.P.Lee, K.Nakamura, T.Abe, H.Aihara, M.Yokoyama, J.Wang, A.K.Ichikawa, M.Ikeda, A.Minamino, T.Nakaya, A.T.Suzuki, Y.Takeuchi, Y.Itow (ICRR/U.Tokyo/IPMU/Kyoto/Kobe/Nagoya)

TIPPII, 9-14 June 2011, Chicago

Long baseline experiment

Candidate site and geological survey

R&D for cavern design

Masashi Yokoyama (Tokyo)

TIPP11, 9-14 June 2011, Chicago

Disposal of excavated waste rock

円山地表2/起程(Ra)

Maruyama (collapsed mountain)

Maruyama 🛹

- excavate inclined straight tunnel
- transportation by belt conveyers

Tochibora (Hyper-K)

Google

Designing tank

Masashi Yokoyama (Tokyo)

TIPP11, 9-14 June 2011, Chicago

Photosensor

- Baseline: 20inch PMT (same as SK)
 - Proved to work!
 - Single photon capability, low dark rate, timing resolution
- One of cost drivers
- R&D ongoing/starting
 - Size/number optimization
 - New sensor (high QE PMT, HPD, gas PMT? ...)
 - Pressure tolerance, avoiding chain implosion

+ Micro Pattern Gas Detectors

Photocathode

windo

Dr. H. Sekiya: Sat. 11:00-

Development of large aperture HAPD

T. Abe On behalf of the collaboration for HAPD (U. of Tokyo, KEK, and Hamamatsu Photonics) 2011/06/10

- We develop large aperture Hybrid Avalanche Photo-Detector (HAPD) and its readout system for neutrino/anti-neutrino experiments.
- HAPD is scheduled to commercially release on the next March.
- We show current status of the HAPD development.

Introduction

Motivation
PMT vs. HAPD
Digital HAPD

All-glass HAPD
New HV supply
Readout

Summary

13inch HAPD

Parameters*	13inch HAPD	13inch PMT (R8055)	20inch PMT (for SK)
# of parts elements	~10	>200	>200
Single Photon Time Resolution (σ)	190ps	1400ps	2300ps
Single Photon Energy Resolution	24%	70%	150%
Quantum efficiency	20%	20%	20%
Collection efficiency	97%	70%	70%
Power consumption	<<700mW	700mW	700mW
Order of Gain	10 ⁵	107	107

commercial production

- We develop large aperture HAPD and its readout system showing superiority than conventional PMTs.
- HAPD will be commercially released on the next March.
- All-glass HAPD is developed and its dark count rate downs to PMT level.
- Compact HV supply is available.
- Compact readout system including fast sampling + DSP + Ethernet output is developed.

HAPD

Avalanche Diode

Operation principle

Compact detector with only Network + Power supplies.

Digital HAPD