

Micro-Machined Silicon Detectors

Marc Christophersen^a and Bernard Phlips U.S. Naval Research Laboratory Code 7651, Gamma Ray Imaging Laboratory (a) NRC postdoctoral fellow

> Contact: phlips@nrl.navy.mil 202-767-3572

MEMS: Micro-Electromechanical Systems

Micrograph, ante with MEMS structures, developed ~ 10-15 years ago.

Evolution of MEMS

last 10 years

MEMS based gyroscope

images from Fraunhofer Institute and Apple

MEMS: Micro-Electromechanical Systems

images from Sandia

one enabling feature: high aspect ratio structures

aspect ratio up to 600										
				Mars						
12.1 kV	3.0	Magn 1676x	SE	5.9	pet			/ µm		

- Trenched Gamma-Ray Detector
- Curved Radiation Detector

3-D Detectors

Nuclear Instruments and Methods in Physics Research A 395 (1997) 328-343

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

3D – A proposed new architecture for solid-state radiation detectors¹

S.I. Parker^{a,*}, C.J. Kenney^a, J. Segal^b

^a University of Hawaii, Honolulu, USA ^b Integrated Circuits Laboratory, Stanford University, Stanford, USA

short distance between electrodes:

- low full depletion voltage
- short collection distance

more radiation tolerant than planar detectors!

DRAWBACK: Fabrication process of 3-D devices is not standard.

S.I. Parker, C. J. Kenney, J. Segal, Nucl. Instr. Meth. Phys. Res. A 395 (1997) 328

Trenched Gamma-Ray Detector - Concept

Z. Li, et al., Nucl. Instr. Meth. Phys. Res. A 139 (2007)

C. Piemonte, et al., Nucl. Instr. Meth. Phys. Res. A 541 (2005)

2-5 mm

Finite Element Simulations – Ideal Structure

Silvaco® simulation result

Our goal:

5 mm thick trenched detector with near trenches for lateral depletion and charge collection.

Trenched Gamma-Ray Detector - Challenges

Fabrication Challenges:

- *microfabrication* high-aspect ratio trench/hole arrays, millimeters deep
- *junction formation* homogeneous junction (no ionimplantation, I²)
- *leakage currents* maintain high minority carrier lifetime

Microfabrication

NRL Nanoscience Institute

NSI Building (2003)

- 5000 ft² laboratory space
- temperature controlled
- EM shielding
- vibration isolation
- acoustic isolation

Class 100 Cleanroom 5000 ft²

- SEM (scanning electron microscope)
- pattern generator
- mask aligner
- reactive ion etcher (RIE) & DRIE
- e-beam evaporator

"types" of deep anisotropic plasma etching:

- Bosch process,
- room T continuous process,
- cryogenic process.

maximal reported depth 300 – 600 μm
(wafer through and via etching)
A. Ayon et al., Sens. Act. A, 91, 2001

SEM cross-section micrograph

Cryogenic DRIE

• no polymer contamination (reactor, substrate) in comparison to Bosch,

- low sidewall roughness,
- DC bias < 10 V (no silicon damage)
- high etch selectivity ~ 500 1,000 to SiO₂,

• BUT sensible process and not so flexible than Bosch process!

limitation of spontaneous chemical reaction and improvement of O sticking

Cryogenic DRIE

- aspect ratio ~ 12
- 1.75 mm deep

SEM micrograph, bird's-eye-view.

Final devices will have narrower trench arrays.

requirements:

- penetrate trench array (no I²),
- gaseous, spin-on, or solid source doping,
- no strong gettering effect (like Phosphorous).

SEM cross-section micrograph stain etched Boron junction

Leakage Current

- IV curve of trenched 3-D gamma-ray detector (0.5 mm thick silicon substrate)
- low leakage current
- strip dimensions: 0.85 x 7.1 mm

Am-241 Spectrum

- Am-241 source
- energy resolution is ~ 2.3 keV FWHM at 59.5 keV
- excellent charge collection

2 mm Thick Wafer

- high leakage current due to back-side damage,
- full depletion at 50 V.

2 mm Thick Wafer

Am-241 & Co-57 sources

energy resolution: 3.0 keV FWHM at 60 keV

Discussion - Trenched Gamma-Ray Detector

The quest for *millimeter* deep trenches in silicon ...

- anisotropy (vertical sidewall),
- mask material (SiO₂...),
- roughness and slope sidewall,
- charge collection inside trenches,
- junction formation,
- selectivity SiO₂:mask (O/F, pressure, DC bias),
- etch rate (1-2 μ m/min),
- increase the aspect ratio.

- Trenched Gamma-Ray Detector
- Curved Radiation Detector

- need to shape surfaces
- need high precision
- preserve silicon quality
- no "machining"
- clean room processes only

Standard Lithography

- The layer of resist is exposed in specific areas through a mask.
- Development washes away exposed resist.
- A plasma etch step transfers the resist pattern into silicon.
- In the final step, resist is removed.

- Photo-sculpting the photoresist (or other photosensitive materials) by spatially variable exposure.
- The thickness of the photoresist after development depends on the local dose of UV irradiation
- Local dose is adjusted to take into account the non-linear photo-response of the particular photoresist and proximity effects.
- The 3-D resist profiles can be transferred into different etch depths or used for molding. The combination of reactive ion etching and gray-tone lithography is called *gray-tone technology*.

Pattern Transfer - Etching

Traditional Gray-tone Lithography

- Stepper exposure: Binary pattern arrays with sub-micrometer resolution on standard chrome-on-glass masks (expensive masks), patented by Gal 1994.
- High Energy Beam Sensitive (HEBS) Glass: Different Ag⁺ ion concentrations generated by exposing the HEBS-glass, patented and commercialize by Canyon Materials, Inc.,1994.

Our Approach

UV light Diffuser Photo-Mask Photo-Resist Silicon substrate

• Our approach presents true gray-tone lithography by using simple contact lithography with an optical diffuser. These contact lithography aligners are widespread in microelectronics laboratories and industry.

• The main idea is to randomize the collimated light using an optical diffuser to generate uniform, controllable intensity distributions in the photoresist.

3D molded replica

We successfully have shown complex 3-D resist profiles. PDMS (polydimethyl-siloxane) replica structures have been obtained.

etch selectivity (etch rate silicon vs. photo-resist): 70 sufficient etch rate of photo-resist needed for pattern transfer

Gray-Tone Lithography

gray-tone resist

Pattern Transfer - Etching

Trench Etching

cross section, SEM micrograph

Trenched Gamma-Ray Detector - Concept

E. Gatti, P. F. Rehak, Nucl. Instr. Meth. Phys Res. A 225 (1984) 608

S.I. Parker, C. J. Kenney, J. Segal, Nucl. Instr. Meth. Phys. Res. A 395 (1997) 328

Finite Element Simulation

potentials along red lines

Gray-Tone Lithography – Curved Detector

Curved Detector

SEM micrograph mechanical sample

photograph

- Equipotential and field lines for a partly curved (a) and curved detector (b).
- For the partially curved detector the collection time depends on the position due to thickness variations.

Curved Detector – Strip Detector

Optical micrograph, top view, strip dimensions 14 x 0.8 mm

- some surface roughness due to Bosch DRIE-etching
- modified lithography on curved surface

Curved Radiation Detector – IV, CV Curve

Curved Radiation Detector

• half-pipe detector, fully depleted

Curved Radiation Detector

Curved Detector – Pixel Detector

Optical micrograph, top view, pixel dimensions 150 x 150 µm

Curved Radiation Detector

Outlook – Wide Field of View Camera

- regular setup
 - 3-element lens
 - planar focal plane array

- curved focal plane array
 - 1-element lens
 - curved focal plane array

Outlook – Wide Field of View Camera

- The use of a high-resistivity substrate permits fully depleted operation at reasonable bias voltages.
- This electric field extends essentially all the way to the backside contact, hence the term full depletion.

No Effect on CCD Fab line. Final curvature already present.

- The basic structure of a thick gamma-ray detector based on trenched substrates has been shown. These detectors have low leakage currents and have an energy resolution of ~ 2.3 keV FWHM at 59.5 keV.
- 2 mm thick silicon fully depleted at ~ 50 V.
- Curved radiation detector due to "gray-tone technology".
- Pixel and strip detector on single- and double-sided etch detectors.

Wide field of view camera based on curved back-sided illuminated CCD.

200 mm Wafer Processing

- ~ 9k Ohmcm FZ material
- 725 μ m thickness
- single side strip detector,
 128 strips, 0.97 mm wide
 and 125 mm long

- Am-241 source
- energy resolution is ~ 2.6
 keV FWHM at 59.5 keV
 (0.7 x 7 mm strip)