Micro-Machined Silicon
Detectors

Marc Christophersen@ and Bernard Phlips
U.S. Naval Research Laboratory
Code 7651, Gamma Ray Imaging Laboratory
(a) NRC postdoctoral fellow

Contact: phlips@nrl.navy.mil
202-767-3572




MEMS

MEMS: Micro-Electromechanical Systems
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Micrograph, ante with MEMS structures,
developed ~ 10-15 years ago.

MEMS based gyroscope
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High Aspect Ratio Structures
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high aspect ratio structures



Outline

* Trenched Gamma-Ray Detector
* Curved Radiation Detector




3-D Detectors

Muclear Instruments and Methods in Physics Research A 395 (1997) 325-343
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3D — A proposed new architecture for solid-state
radiation detectors?

S.I. Parker®*, C.J. Kenney?, J. Segal®

& University of Hawaii, Honolulu, US4
" Integrated Circuits Laboratory, Stanford University, Stanford, 754




Standard 3-D Detectors
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short distance between electrodes:
* low full depletion voltage
* short collection distance

> more radiation tolerant than planar
detectors!

DRAWBACK: Fabrication process of 3-D devices is not standard.

S.I. Parker, C. J. Kenney, J. Segal, Nucl. Instr. Meth. Phys. Res. A 395 (1997) 328
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* mm thick detectors
* decoupling thickness and depletion

voltage
Wb




Trenched Gamma-Ray Detector - Concept
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Z. 14, et al., Nucl. Instr. Meth. Phys. Res. A
139 (2007)
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Coaxial Ge Detector

C. Piemonte, et al., Nucl. Instr. Meth. Phys.
Res. A 541 (2005)
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Trenched Gamma-Ray Detector

~0.3-0.5mm 2-5 mm ~ 30 mm
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tential (V)
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5 mm thick trenched detector
with near trenches for lateral
depletion and charge
collection.
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Silvaco® simulation result
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Trenched Gamma-Ray Detector - Challenges
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Fabrication Challenges:

microfabrication — high-aspect
ratio trench/hole arrays,
millimeters deep

Jjunction formation —
homogeneous junction (no ion-
implantation, I?)

leakage currents — maintain high
minority carrier lifetime
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Microfabrication

NRL Nanoscience Institute

NSI Building
(2003)

; h

* 5000 ft> laboratory space
* temperature controlled

* EM shielding

* vibration isolation

* acoustic isolation

Class 100 Cleanroom
5000 ft2 |

._#—’L |

* SEM (scanning electron microscope)
* pattern generator
* mask aligner

* reactive ion etcher (RIE) & DRIE
* e-beam evaporator
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Simplified Process Sequence”

B i N

2 mm thick 4” Si oxidation Phosphorous I?
cryogenic DRIE opening of Si0, hard-mask PECVD oxides

Q] - B -

opening of Si0, hard-mask solid source Boron diffusion Si10, etch + metallization

* Does not include cleaning steps.
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Simplified Process Sequence”

B i N

2 mm thick 4” Si oxidation Phosphorous I?
cryogenic DRIE opening of Si0, hard-mask PECVD oxides

Q] - B -

opening of SiO, hard-mask solid source Boron diffusion Si10, etch + metallization

* Does not include cleaning steps.
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“types” of deep anisotropic plasma etching:
* Bosch process,

* room T continuous process,

®  Cryogenic process.

maximal reported depth 300 — 600 pUm

(wafer through and via etching)
A. Ayon et al., Sens. Act. A, 91, 2001

SEM cross-section micrograph
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Cryogenic DRIE

SiF,

* no polymer contamination (reactor,
substrate) in comparison to Bosch,

* low sidewall roughness,

* DC bias < 10 V (no silicon damage)

* high etch selectivity ~ 500 — 1,000 to Si0,,

mask, 310, O+F+ion%

SF, + O,
ICP plasma

* BUT sensible process and not so flexible
than Bosch process!

ultra thin layer
of S102

limitation of spontaneous chemical
reaction and improvement of O sticking
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Cryogenic DRIE

* aspectratio ~ 12

* 1.75 mm deep

300 pm

SEM micrograph, bird’s-eye-view.

Final devices will have narrower trench arrays.
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Boron Diffusion

requirements:

* penetrate trench array (no I?),

* gaseous, spin-on, or solid
source doping,

* no strong gettering effect
(like Phosphorous).

Zum
A

Mag= 633K X

Stage at X = 63,156 mm EHT= 500 ky Date 20 Mar 2008
Stage atY = 68867 mm  StageatR= 858° WD= &mm  Time:93553
Stage atZ=27500mm StageatT= 450°  Signal A = InLensPhofo No. =212

SEM cross-section micrograph
stain etched Boron junction
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Leakage Current
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Bias [V]

* IV curve of trenched 3-D gamma-ray detector
(0.5 mm thick silicon substrate)

* low leakage current

* strip dimensions: 0.85 x 7.1 mm




Counts

Am-241 Spectrum
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Am-241 source
energy resolution 1s ~ 2.3

keV FWHM at 59.5 keV
excellent charge collection
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Current [A]

2 mm Thick Wafer

10
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Bias [V]

11

510

410
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substrate ~ 20,000 Qcm

10
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Bias [V]

high leakage current due to back-side damage,

full depletion at 50 V.
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The quest for millimeter deep trenches 1n silicon ...

* anisotropy (vertical sidewall),
e mask material (S10,...),

* roughness and slope sidewall,

* charge collection inside trenches,

* junction formation,

e selectivity S10,:mask (O/F, pressure, DC bias),
* etch rate (1-2 m/min),

* increase the aspect ratio.

> under control

challenges
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Outline

* (Curved Radiation Detector
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Particle Physics Vertex Detectors

Current Proposed

O/O.@Q

(a)

* need to shape surfaces

* need high precision

* preserve silicon quality

* no “machining”

* clean room processes only
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Standard Lithography

The layer of resist is exposed in
specific areas through a mask.

Development washes away
exposed resist.

A plasma etch step transfers the
resist pattern into silicon.

In the final step, resist is
removed.

UV Light

mask
photoresist

Exposure substrate

Developing

Plasma Etching

EERERR

Pattern Transfer

Finished Product
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Gray-Tone Lithography

* Photo-sculpting the photoresist (or other photosensitive materials) by spatially

variable exposure.
* The thickness of the photoresist after development depends on the local dose

of UV irradiation
* Local dose is adjusted to take into account the non-linear photo-response of the

particular photoresist and proximity effects.
* The 3-D resist profiles can be transferred into different etch depths or used for

molding. The combination of reactive ion etching and gray-tone lithography is
called gray-tone technology.

Pattern Transfer - Etching
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Gray-Tone Lithography

Traditional Gray-tone Lithography

* Stepper exposure: Binary pattern arrays with sub-micrometer resolution on
standard chrome-on-glass masks (expensive masks), patented by Gal 1994.

* High Energy Beam Sensitive (HEBS) Glass: Different Ag* ion
concentrations generated by exposing the HEBS-glass , patented and
commercialize by Canyon Materials, Inc.,1994.

WU UthhtO”rAppmaCh

* Our approach presents true gray-tone
Diffuser lithography by using simple contact

/WW lithography with an optical diffuser. These
contact lithography aligners are widespread
RN g

in microelectronics laboratories and
Exposed region industr y-
* The main idea is to randomize the
collimated light using an optical diffuser to
Silicon generate uniform, controllable intensity
substrate distributions in the photoresist.

Photo-Mask

Photo-Resist
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, , , _ 3D molded replica
3D sinusoidal resist profile

We successfully have shown complex 3-D resist profiles. PDMS (polydimethyl-
siloxane) replica structures have been obtained.
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Gray-Tone Lithography

Step Height [um]
N
T

0 I I I I I ] I
0 20 40 60 80 100 120 140

. . ) _Position [pm]

Optical micrograph, top view Profilometer scan
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Deep Reactive Ion Etching

SiF,
F+ions

SF, plasma

thin fluoro-carbon
polymer film (passivation)

C,F, plasma

SF, plasma

etch selectivity (etch rate silicon vs. photo-resist): 70
sufficient etch rate of photo-resist needed for pattern transfer
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Gray-Tone Lithography

gray-tone resist

Pattern Transfer - Etching
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Trench Etching

cross section, SEM micrograph
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Trenched Gamma-Ray Detector - Concept
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Finite Element Simulation
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potential distribution

thermal electron leakage current
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Finite Element Simulation
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Gray-Tone Lithography — Curved Detector

photo-resist cut-line cut-line

Rd /1

a) b) photo-resist ¢) d)
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Curved Detector

100um Stage at X = 69 496 mm EHT= 500 kv Date 27

L . _
StageatY=73718mm StageatR= 998° WD= 26mm Time7:2

Mag= 151X Stage at 7= 27500 mm Stage atT= 700°  Signal A = SE2 PhotoMNo

SEM micrograph photograph
mechanical sample

38



Curved Detector

double-sided etched

*  Equipotential and field lines for a partly curved (a) and curved detector

(b).
* For the partially curved detector the collection time depends on the
position due to thickness variations.
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Curved Detector — Strip Detector

Optical micrograph, top view, strip
dimensions 14 x 0.8 mm

* some surface roughness due to Bosch DRIE-etching
* modified lithography on curved surface
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Curved Radiation Detector — IV, CV Curve
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* single-sided strip detector @
* half-pipe detector, under reverse bias
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Curved Radiation Detector
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* single-sided strip detector @

* half-pipe detector, fully depleted
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Curved Radiation Detector

I I I I
6400 5.38 keV at 59.54 keV
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* single-sided strip detector ‘\
* double-sided etched detector, fully depleted ~N—7
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Curved Detector — Pixel Detector

Optical micrograph, top view, pixel
dimensions 150 x 150 pm




Curved Radiation Detector

Counts
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ﬂ 1.73 keV at 59.54 keV
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Energy [keV]

* pixel detector
* half-pipe detector, fully depleted

S

@
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Outlook — Wide Field of View Camera

* regular setup L] e
— 3-element lens I B
— planar focal plane array | =

* curved focal plane array [ Z A
_ 1 _element lens ', ' 7 _:_ . _ 5 ___ — ___.;}_ -I,.

— curved focal plane array
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Outlook — Wide Field of View Camera

Backside electrode for depletion,
ITO (Indium Tin Oxide)

. p-type silicon
depleted

Incoming photons

+100 V

300 pm { n-type silicon

=== Silicon dioxide insulating layer
=== Polysilicon electrodes

v

* The use of a high-resistivity substrate permits fully depleted operation at reasonable

bias voltages.
* This electric field extends essentially all the way to the backside contact,

hence the term full depletion.

No Effect on CCD Fab line. Final curvature already present.
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Conclusions

The basic structure of a thick gamma-ray detector based on trenched

substrates has been shown. These detectors have low leakage currents
and have an energy resolution of ~ 2.3 keV FWHM at 59.5 keV.

2 mm thick silicon fully depleted at ~ 50 V.

Curved radiation detector due to “gray-tone technology”.

Pixel and strip detector on single- and double-sided etch detectors.

Wide field of view camera based on curved back-sided illuminated
CCD.

48



200 mm Wafer Processing




200 mm Wafer Processing

* ~ 9k Ohmcm FZ material

* 725 pm thickness

* single side strip detector,
128 strips, 0.97 mm wide
and 125 mm long
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Counts
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200 mm Wafer Processing
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Am-241 source
energy resolution is ~ 2.6

keV FWHM at 59.5 keV
(0.7 x 7 mm strip)
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