Fast neutron detection and imaging for nuclear security applications

Erik Brubaker

Sandia National Laboratories, Livermore, CA 30 November 2011 LBL Instrumentation Seminar

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2011-9007P.

Fast neutron imagers @ SNL/CA

Cast: P. Marleau N. Mascarenhas J. Lund J. Goldsmith J. Steele S. Mrowka J. Brennan M. Gerling A. Nowack P. Schuster K. McMillan

Outline

- Motivation
 - SNM detection/imaging.
 - Why fast neutrons?
 - Why imaging?
- Detector design
 - Physics
 - Design considerations
- Detector zoo
- Miscellaneous topics

SNM detection/imaging

SNM detection applications

- Low signal rate
 - Need large area detectors!
- Low signal to background
 - Need background discrimination!

Arms control treaty verification

Emergency response

SNM imaging applications

- High resolution required lacksquare
 - Fine detector segmentation
- Multiple or extended • sources

Why neutrons?

- Special nuclear material emits ionizing radiation.
 - Sensitive and specific signature
- Only neutral particles penetrate shielding.
- Neutrons are more specific:
 - Lower natural backgrounds
 - Fewer benign neutron emitters

www.remnet.jp

Why fast neutrons?

- Fast neutrons likely have not scattered—retain directional history.
- Shielding turns fast neutrons into thermal neutrons—but also absorbs thermal neutrons.
 - Flux as a Function of Distance to Source Counts < 125 keV **Red**: **Blue:** >125 keV 10⁻² **Black:** Total 10⁻³ 10-4 10⁻⁵ Signal only 10-6 250 300 350 400 450 500 Distance (m.)

- Directional information helps
 - Distinguish signal from background—isolate a point source.
 - Produce image of multiple or extended radiation sources.

30 November, 2011

E. Brubaker, SNL/CA

Low S:B: what does it mean?

- Example: Large stand-off application (100 meters)
 - − 8 kg WGPu = ~4.4e5 n/s → 4.4e5 *exp(-R/100)/4πR² ~1.3 n/s/m²
 - Background = $\sim 50 \text{ n/s/m}^2$ (at sea level)
 - 100% efficient, 1 m² detector $\rightarrow 5\sigma$ det in ~13 minutes
 - 10% efficient, 1 m² detector \rightarrow 5 σ det in ~2 hours

Signal/noise: Spectrometry

Energy resolution doesn't enhance fast neutron S/N much.

Signal/noise: Imaging

Neutron Detection

Taken from ENDF database

Neutron Detection - Elastic

$$Q_{\max} = \frac{4mME_n}{\left(M+m\right)^2}$$

Nucleus	Q_{max}/E_n	E+3
¦H	1.000	E+2
$^{2}_{1}$ H	0.889	E+1
⁴ ₂ He	0.640	
⁹ ₄ Be	0.360	
¹² ₆ C	0.284	Š E-2
¹⁶ ₈ O	0.221	
⁵⁶ ₂₆ Fe	0.069	
¹¹⁸ ₅₀ Sn	0.033	
²³⁸ 92U	0.017	E-5 E-4 E-3 E-2 E-1 E+0 E+1 E+2 E+3 E+4 E+5 E+6 E+7 Incident Energy (eV)

30 November, 2011

E. Brubaker, SNL/CA

Detector design considerations

- Scalability/size
 - For interesting problems, must scale to $O(1 \text{ m}^2)$.
- Interaction length/cross-sections
 - Reasonable efficiency dictates thickness of active medium and shielding > 2".
- Robustness/fieldability
 - Temperature sensitivity
 - Calibration issues

Bandia National Laboratories How to build a neutron imager

- N-P elastic scattering
- Sensitivity to direction
 - Event by event (kinematics)
 - Statistical (many events form a pattern)

- Liquid scintillator based.
 - Gamma discrimination
- Shielding is hydrogenous material.

Two primary attributes:

Effective Area

Imaging Resolution

Effective Area

- Effective area over which the detector would be 100% efficient.
- Physical cross-sectional area times the detection efficiency.

$$A_{eff} = A_{phys} * \varepsilon$$

Not in this talk

- Other neutron imagers for security applications:
 - Thermal neutron imagers
 - Neutron TPCs
 - Bubble chambers
 - ⁴He-based detectors

- Other application spaces
 - Dark matter detection
 - DM background characterization
 - Fusion diagnostics
 - Tokamaks
 - ICF
 - Neutron radiography
 - Thermal
 - Fast

The detector zoo

Neutron scatter camera

The detector zoo

Pinhole imager

- Just like a pinhole camera—detect neutrons streaming through a single hole in a thick mask.
- Simplest possible directional detector.
- But low effective area.

The detector zoo

Coded aperture imagers

- Extension of pinhole with much higher effective area: signal modulated in unique patterns.
- Excellent imaging resolution.
- Potential problems with multiple/extended sources.
- Collaboration with ORNL: P. Hausladen J. Newby M. Blackston

Coded aperture imaging

- Aperture is used to modulate the flux emitted by an unknown source distribution
 - Modulated flux intensity is measured at the detector plane by a position sensitive detector
- Ideal theory vs fast neutron reality?

Aperture types

- Uniformly redundant array (URA)
 - Arrays with constant sidelobes of their periodic autocorrelation function
 - URAs can be generated in any length *L* that is prime and of the form L = 4m + 3, m = 1, 2, 3, ...
 - Throughput equal to $(L-1)/2L \sim = 50\%$
- Random
 - Not limited by a mathematical formula
 - Can be built for any mask size or open fraction

Extended source optimization

- Ring, block, point source arrangement
- Define image quality as $\sim \chi^2$ between image, true source.
- Optimize open fraction

Sandia National Laboratories

- Red line represents URA performance
- Blue line represents pinhole performance

30 November, 2011

E. Brubaker, SNL/CA

The detector zoo

Time-encoded imaging

- Switch spatial modulation for time modulation.
- Simple and robust, low-channel-count detectors.
- Can scale to large effective area.

Rotational Self Modulation

• More compact and more easily scalable at the cost of lower S/N

The detector zoo

Imaging via anisotropies

- DPA crystal
- 14 MeV neutron generator
- Crystal was rotated by 90°
- Neutron pulse height and width increased!

Can we invert the effect to *measure* neutron direction?

The detector zoo

Recurring themes

- Optimize the detector for the application!
- Importance of reconstruction algorithms.
- Simulation as a tool for detector design.
- Need to understand the background.
- Need quantitative tests and characterization.

Use the right detector!

- Extended source imaging: 20" line source.
- Sizeable source at 3 m S:B not an issue.
- Pinhole camera outperforms the scatter camera.

Algorithms matter

Single neutron scatter camera dataset:

30 November, 2011

Algorithms matter

- 1-D Coded aperture LDRD detector.
- Image reconstruction is ideal for obtaining images, not finding sources.

Calibration and simulation

E. Brubaker, SNL/CA

Simulation cross-check

- Single-slit experiment.
- AmBe source.
- No full image plane \rightarrow scan 2"D x 2" liquid cells (highest quality PSD).
- Data has background subtracted.
- Total MC rate normalized to data.

Active veto fraction

-10

0

MC

Data

20

Horizontal (deg)

30

10

Monte Carlo simulation models data fairly well:

Overall opacity

* Effect of active veto

Understanding background

- Systematic uncertainties in background are dominant performance limitation in low-S:B scenarios.
- Imaging can help!

Recurring themes

- Optimize the detector for the application!
- Importance of reconstruction algorithms.
- Simulation as a tool for detector design.
- Need to understand the background.
- Need quantitative tests and characterization.

Conclusions

- Fast neutron imaging improves on the state of the art and addresses pressing problems in nuclear security.
- We have designed, built, and tested several fast neutron imagers based on different detection concepts.
- We are pursuing quantitative evaluation of different systems in different scenarios; and learning how to optimize detectors for particular scenarios.