

Cyclic Voltammetry SOP

- 1. Set up should include the following:
 - a. Flask or vial with room for electrodes
 - b. Working electrode (Glassy carbon or other) attached to greed wire
 - c. Counter Electrode (Pt wire) attached to red wire
 - d. Reference electrode (Ag) attached to the white wire
 - e. Electrolyte solution (2-5 ml, enough to cover electrodes) such as 0.1 M [NBu₄][PF₆]
- 2. Bubble inert gas such as Nitrogen into solution to clear Oxygen
- 3. First run the CV in the electrolyte to establish a background
- 4. Go to "T" for Technique and select CV
- 5. Adjust parameters:
 - Range will go from Init E (V) to final E(V)
 - Initial Scan polarity can be negative or positive depending on the direction of the Scan
 - Scan rate (V/s) is normally set at 0.1 (adjust accordingly for specific experiment)
 - Sweep segments 2 (every 2 is a cycle)
 - Sample interval (V) is normally 0.001 or can be adjusted accordingly
 - Quiet Time (sec) is normally 2
 - Sensitivity (A/V) is normally 1 e-004 or can be adjusted accordingly

- 6. Set Resistance Compensation.
 - a. By pressing "Test" in iR Compensation, Resistance should be <100.
 - b. If <100,
 - i. Move electrodes closer together
 - ii. Check electrode connections
 - iii. Add more electrolyte solution
 - c. iR compensation "Once" or Always
 - d. iR Comp Mode Automatic or manual and set resistance.

- 7. Run play button to take background
- 8. Add material (2-5 ml volume, 1.0-0.25 mmolar concentration, high concentration better)
- 9. With material, repeat step 6.
- 10. Run play button

- 11. Check Data Plot
 - a. Ep Segment $1 = Ep_1$
 - b. Ep Segment 2 = Ep_2
 - c. $E_{1/2}=(Ep_1+Ep_2)/2$
- 12. For Electrosynthesis, Go to "T" for Technique and select electrosynthesis
- 13. In parameters set:
 - a. $E_I = E_{1/2}$ from CV measurement
 - b. Set Hold time till conversion