Complex Oxides

Skip to end of metadata
Go to start of metadata

 

With their highly tunable electronic states, both complex (transition metal) oxides are highly promising classes of materials in which to realize new phenomena that may challenge our current understanding of condensed matter. Within the perovskite family (ABO3), a remarkable range of functional phenomena—ferroelectricity, ferromagnetism, multiferroicity, and superconductivity, for example—can be accessed through chemical substitution at the A and B sites. One route toward tuning the properties of complex oxides is application of anisotropic strain via the imposition of a novel boundary condition during growth. For example, epitaxial growth and solution phase synthesis has been shown to stabilize high strain states (from 3-7%) in nanostructured oxide materials. We are exploring how strain might controllably alter their collective orderings – magnetic, ferroelectric, and other correlated states – and thereby affect the transport and optical response of these chemically-tunable systems. One potential application of these fundamental studies is artificial photosynthesis.

 

Strontium titanate (SrTiO3) is a promising water-splitting catalyst for artificial photosynthesis, given its band-edge energies and stability in water. However, the wide optical band gap of SrTiO3 (3.2 eV) makes it inefficient for absorbing solar photons, the majority of which have lower energies. Here we identify routes for modifying the band gap of SrTiO3 by lowering orbital symmetry via anisotropic strain.

Related Publications

79 Lee APL
C.-H. Lee, N. J. Podraza, Y. Zhu, R. F. Berger, S. Shen, M. Sestak, R. W. Collins, L. F. Kourkoutis, J. A. Mundy, H. Wang, Q. Mao, X. Xi, L. J. Brillson, J. B. Neaton, D. A. Muller, and D. G. Schlom, "Effect of reduced dimensionality on the optical band gap of SrTiO3," Appl. Phys. Lett. 102, 122901 (2013). Abstract
76 Berger PRB
R. F. Berger and J. B. Neaton, "Computational design of low-band-gap double perovskites," Phys. Rev. B 86, 165211 (2012). Abstract

N. Adelstein, J. B. Neaton, M. A. and Lutgard C. De Jonghe, "First-Principles Studies of Proton-Ba Interactions in Doped LaPO4," J. Mater. Chem. 22, 3758-3763 (2012). Abstract

61 Berger PRL 2011

R. F. Berger, C. J. Fennie, and J. B. Neaton, "Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO3," Phys. Rev. Lett. 107, 146804 (2011). Abstract

47 Zhou AEM

L. Zhou, Q. Yan, A. Shinde, D. Guevarra, P. F. Newhouse, N. Becerra-Stasiewicz, S. M. Chatman, J. A. Haber, J. B. Neaton, and J. M. Gregoire, "High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V2O5 System," Adv. Energy Mater. 5, 1500968 (2015). Abstract

P. F. Newhouse, D. Guevarra, M. Umehara, S. E. Reyes-Lillo, L. Zhou, D. A. Boyd, S. K. Suram, J. K. Cooper, J. A. Haber, J. B. Neaton, and J. M. Gregoire, "Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion," Energy Environ. Sci., 11, 2444 (2018). Abstract

B. A. Connor, L. Leppert, M. D. Smith, J. B. Neaton, and H. I. Karunadasa, "Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6," J. Am. Chem. Soc. 140, 5235 (2018). Abstract

T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E. Moore, and J. B. Neaton, "Large Bulk Photovoltaic Effect and Spontaneous Polarization of Single-Layer Monochalcogenides," Phys. Rev. Lett. 119, 067402 (2017). Abstract

2017 02 Yan PNAS

Q. Yan, J. Yuc, S. K. Suram, L. Zhou, A. Shinde, P. F. Newhouse, W. Chen, G. Li, K. A. Persson, J. M. Gregoire, and J. B. Neaton, "Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment," Proc. Natl. Acad. Sci. 114, 3040 (2017). Abstract

A. Shinde, G. Li, L. Zhou, D. Guevarra, S. K. Suram, F. M. Toma, Q. Yan, J. A. Haber, J. B. Neaton, and J. M. Gregoire, "The role of the CeO2/BiVO4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes," J. Mater. Chem. A 4, 14356 (2016). Abstract