Artificial Photosynthesis

Skip to end of metadata
Go to start of metadata

Artificial photosynthesis, in which solar energy is directly converted to hydrogen fuel, presents an attractive form of renewable energy. We study materials such as SrTiO3capable of using absorbed solar photons to split water to its constituent oxygen and hydrogen.

Strontium titanate (SrTiO3) is a promising water-splitting catalyst for artificial photosynthesis, given its band-edge energies and stability in water. However, the wide optical band gap of SrTiO3 (3.2 eV) makes it inefficient for absorbing solar photons, the majority of which have lower energies. Here we identify routes for modifying the band gap of SrTiO3 by lowering orbital symmetry via anisotropic strain.

Related Publications

79 Lee APL
C.-H. Lee, N. J. Podraza, Y. Zhu, R. F. Berger, S. Shen, M. Sestak, R. W. Collins, L. F. Kourkoutis, J. A. Mundy, H. Wang, Q. Mao, X. Xi, L. J. Brillson, J. B. Neaton, D. A. Muller, and D. G. Schlom, "Effect of reduced dimensionality on the optical band gap of SrTiO3," Appl. Phys. Lett. 102, 122901 (2013). Abstract
76 Berger PRB
R. F. Berger and J. B. Neaton, "Computational design of low-band-gap double perovskites," Phys. Rev. B 86, 165211 (2012). Abstract
68 Yang Nano Lett 2012

S. Yang, D. Prendergast, and J. B. Neaton, "Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation," Nano Lett. 12, 383–388 (2012). Abstract

61 Berger PRL 2011

R. F. Berger, C. J. Fennie, and J. B. Neaton, "Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO3," Phys. Rev. Lett. 107, 146804 (2011). Abstract

32 Yan AEM
Q. Yan, G. Li, P. F. Newhouse, J. Yu, K. A. Persson, J. M. Gregoire, and J. B. Neaton, "Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting," Adv. Energy Mater. 5, 1401840 (2015). Abstract
31 Yu CC
J. Yu, Q. Yan, W. Chen, A. Jain, J. B. Neaton, and K. A. Persson, "First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst," Chem. Commun. 51, 2867 (2015). Abstract

P. F. Newhouse, S. E. Reyes-Lillo, G. Li, L. Zhou, A. Shinde, D. Guevarra, S. K. Suram, E. Soedarmadji, M. H. Richter, X. Qu, K. Persson, J. B. Neaton, and J. M. Gregoire, "Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode," Chem. Mater. 29, 10027 (2017). Abstract

A. Shinde,  S. K. Suram,  Q. Yan,  L. Zhou,  A. K. Singh,  J. Yu,  K. A. Persson,  J. B. Neaton,  and J. M. Gregoire, "Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments," ACS Energy Lett. 2, 2307 (2017). Abstract

P. Newhouse, D. A. Boyd, A. Shinde, D. Guevarra, L. Zhou, E. Soedarmadji, G. Li, J. B. Neaton and J. Gregoire, "Solar Fuels Photoanodes Prepared by Inkjet Printing of Copper Vanadates," J. Mater. Chem. A. 4, 7483 (2016). Abstract

2016 05 Zhou PCCP

L. Zhou, Q. Yan, J. Yu, R. J. R. Jones, N. Becerra-Stasiewicz, S. K. Suram, A. Shinde, D. Guevarra, J. B. Neaton, K. A. Persson, and J. M. Gregoire, "Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation," Phys. Chem. Chem. Phys. 18, 9349 (2016). Abstract