Skip to end of metadata
Go to start of metadata

Alexis T. Bell

Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, Catalysis and Chemical Transformations Program; Joint Center for Artificial Photosynthesis (JCAP); SciDAC

University of California, Berkeley
Department of Chemical Engineering
Mailstop: Gilman 1462
Berkeley, CA 94720-1462

Location:107 Gilman Hall
Telephone:(510) 642-1536
Fax:(510) 642-2847
Assistant:Jeff King - - (510) 643-1557

The Catalysis Program

Professor; Faculty Senior Scientist, LBNL; B.S., Massachusetts Institute of Technology (1964) Sc.D., Massachusetts Institute of Technology (1967). Curtis W. McGraw Award for Research, American Association of Engineering Education; the Professional Progress and R. H. Wilhelm Awards, the American Institute of Chemical Engineers; Paul H. Emmett Award in Fundamental Catalysis, Catalysis Society; National Academy of Engineering (1987) Fellow of the American Association for the Advancement of Science (1988).

Research Interests:
Professor Bell studies reaction mechanisms in order to identify factors limiting the activity and selectivity of catalysts. Reaction systems being investigated by his group include the synthesis of oxygenated compounds from COx (x = 1, 2), the conversion of alkanes to olefins and oxygenated products under oxidizing conditions, and the reduction of nitric oxide under oxidizing conditions. The objectives of his program are pursued through a combination of experimental and theoretical methods. Spectroscopic techniques, including IR, Raman, NMR, UV-Visible, and EXAFS, are used to characterize catalyst structure and adsorbed species under actual conditions of catalysis. Isotopic tracers and temperature-programmed desorption and reaction techniques are used to elucidate the pathways via which catalyzed reactions occur. Quantum chemical calculations are conducted to define the structure and energetics of adsorbed species and the pathways by which such species are transformed. The combined use of theory and experimental methods enables the attainment of a deeper understanding of the core issues of interest than can be achieved by the use of either approach alone.